Диссимиля́ция (от лат. dis- — приставка, означающая разделение, отрицание («раз/рас») и similis «подобный», то есть «расподобление», «расхождение») — в фонетике и фонологии под диссимиляцией понимают процесс обратный ассимиляции, то есть два или более одинаковых или близких по типу звука расходятся в произношении всё дальше. В целом, диссимиляция выражается в замене одного из двух одинаковых или похожих (по месту образования) звуков другим, менее сходным по артикуляции с тем, который остался без изменений. Как феномен встречается несколько реже ассимиляции, хотя статистически её частотность варьирует в зависимости от конкретного языка.
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
Диссимиля́ция (от лат. dis- — приставка, означающая разделение, отрицание («раз/рас») и similis «подобный», то есть «расподобление», «расхождение») — в фонетике и фонологии под диссимиляцией понимают процесс обратный ассимиляции, то есть два или более одинаковых или близких по типу звука расходятся в произношении всё дальше. В целом, диссимиляция выражается в замене одного из двух одинаковых или похожих (по месту образования) звуков другим, менее сходным по артикуляции с тем, который остался без изменений. Как феномен встречается несколько реже ассимиляции, хотя статистически её частотность варьирует в зависимости от конкретного языка.
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.