AABD = AACD, так как: ДАВС = ACDA, так как: ДАОВ = ADOC, так как: Записать три равенства, доказывающих, что треугольники равны в соответствии с первым признаком
Векторы равны, если равны их модули (длины) и они направлены в одну сторону. Таким образом, получить вектор CD, равный вектору АВ можно параллельным переносом точек начала и конца вектора АВ. При параллельном переносе точки смещаются на одинаковое расстояние в одну сторону. Тогда Xc = Xa + k; Yc = Ya + m ; Xd = Xb+k; Yd = Yb+m.
Величины k и m могут быть любыми, но одинаковыми для соответствующих координат точек.
В нашем случае k = -1, m = 0. (разница соответствующих координат точек А и С).
Тогда точка D будет иметь координаты
Xd = Xb+(-1) = -2; Yd = Yb+0 = 0. То есть D(-2;0).
Проверка:
Координаты вектора АВ:
Xab = Xb-Xa = -1-1 = -2. Yab = Yb-Ya = 0-1 = -1.
|AB| = √((-2)²+(-1)²) = √5.
Координаты вектора CD:
Xcd = Xd-Xc = -2-0 = -2. Yab = Yd-Yc = 0-1 = -1.
|CD| = √((-2)²+(-1)²) = √5.
Итак, модули векторов равны и направлены они в одну сторону, так как их координаты пропорциональны с положительным коэффициентом, равным
D(-2;0).
Объяснение:
Векторы равны, если равны их модули (длины) и они направлены в одну сторону. Таким образом, получить вектор CD, равный вектору АВ можно параллельным переносом точек начала и конца вектора АВ. При параллельном переносе точки смещаются на одинаковое расстояние в одну сторону. Тогда Xc = Xa + k; Yc = Ya + m ; Xd = Xb+k; Yd = Yb+m.
Величины k и m могут быть любыми, но одинаковыми для соответствующих координат точек.
В нашем случае k = -1, m = 0. (разница соответствующих координат точек А и С).
Тогда точка D будет иметь координаты
Xd = Xb+(-1) = -2; Yd = Yb+0 = 0. То есть D(-2;0).
Проверка:
Координаты вектора АВ:
Xab = Xb-Xa = -1-1 = -2. Yab = Yb-Ya = 0-1 = -1.
|AB| = √((-2)²+(-1)²) = √5.
Координаты вектора CD:
Xcd = Xd-Xc = -2-0 = -2. Yab = Yd-Yc = 0-1 = -1.
|CD| = √((-2)²+(-1)²) = √5.
Итак, модули векторов равны и направлены они в одну сторону, так как их координаты пропорциональны с положительным коэффициентом, равным
Xab/Xcd = Yab/Ycd = (-2)/(-2) =(-1)/(-1) =1.
Координаты точки D найдены верно.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°