Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и являются биссектрисами углов. Поэтому на рис. отметили только половину диагонали АС: АО = 14 см и два угла по 30°. В прямоугольном треугольнике катет, против угла в 30°, равен половине гипотенузы. Обозначим сторону ромба х, тогда ОВ=х/2 По теореме Пифагора АВ²=АО²+ОВ² х²=14²+(х/2)² 3х²/4=196, х²=196·4/3 х=28√3/3 Площадь ромба равна произведению стороны, на высоту, проведенную к стороне, но с другой строны площадт ромба равна произведению сторон на синус угла между ними x·h=x·x·sin 60°, h=x sin 60°=(28√3/3)·(√3/2)=14 см ответ. Высота ромба равна 14 см.
А можно ещё проще. Треугольник DAB -равносторонний. Угол при вершине 60°, DA=AB Значит и углы при основании 180°-60°=120°:2=60° АО- высота, опущенная на сторону DB В равностороннем треугольнике все высоты равны, Значит и высота на сторону DA равна 14.
Поэтому на рис. отметили только половину диагонали АС:
АО = 14 см
и два угла по 30°.
В прямоугольном треугольнике катет, против угла в 30°, равен половине гипотенузы.
Обозначим сторону ромба х, тогда ОВ=х/2
По теореме Пифагора
АВ²=АО²+ОВ²
х²=14²+(х/2)²
3х²/4=196,
х²=196·4/3
х=28√3/3
Площадь ромба равна произведению стороны, на высоту, проведенную к стороне, но с другой строны площадт ромба равна произведению сторон на синус угла между ними
x·h=x·x·sin 60°,
h=x sin 60°=(28√3/3)·(√3/2)=14 см
ответ. Высота ромба равна 14 см.
А можно ещё проще. Треугольник DAB -равносторонний. Угол при вершине 60°, DA=AB
Значит и углы при основании 180°-60°=120°:2=60°
АО- высота, опущенная на сторону DB
В равностороннем треугольнике все высоты равны, Значит и высота на сторону DA равна 14.
Четырехугольник задан координатами его вершин, значит имеем дело с векторами. Выпуклый многоугольник - многоугольник, все углы которого меньше 180°.
Косинус угла между векторами равен скалярному произведению векторов, поделенному на произведение модулей векторов.
Для нахождения угла А:
1) находим координаты векторов АВ и АD (угол А между ними) :
АВ={Xb-Xa;Yb-Ya} = {5-4;7-4} = {1;3}
AD={12-4;4-4} = {8;0}
2) Находим скалярное произведение векторов АВ и АD:
AB*AD= Xab*Xad + Yab*Yad = 8+0=8
3) Находим модули векторов АВ и АС:
|AB| = √(X²+Y²) = √(1+9) = √10
|AD| = √(64+0) = 8
CosA= AB*AD/(|AB|*|AD|) = 8/8√10 ≈ 0,316 Угол А ≈ 72°.
Для нахождения угла В:
1) находим координаты векторов ВА и BС (угол В между ними) :
BA={Xa-Xb;Ya-Yb} = {4-5;4-7} = {-1;-3}
BC={10-5;10-7} = {5;3}
2) Находим скалярное произведение векторов BA и BС:
BA*BC= Xba*Xbc + Yba*Ybc = (-5)+(-9)= -14
3) Находим модули векторов BA и BС:
|BA| = √(X²+Y²) = √(1+9) = √10
|BC| = √(25+9) = √34
CosВ= ВА*ВС/(|ВА|*|ВС|) = -14/√340 ≈ -0,759 Угол В ≈ 139°.
Для нахождения угла C:
1) находим координаты векторов CB и CD (угол C между ними) :
CB={5-10;7-10} = {-5;-3}
CD={12-10;4-10} ={2;-6}
2) Находим скалярное произведение векторов CB и CD:
CB*CD= Xcb*Xcd + Ycb*Ycd = (-10)+(18)= 8
3) Находим модули векторов CB и CD:
|CB| = √(X²+Y²) = √(25+9) = √34
|CD| = √(4+36) = √40
CosC= CB*CD/(|CB|*|CD|) = 8/36,88 ≈0,217 Угол C ≈ 77°.
Для нахождения угла D:
1) находим координаты векторов DC и DA (угол D между ними) :
DC={10-12;10-4} = {-2;6}
DA={4-12;4-4} ={-8;0}
2) Находим скалярное произведение векторов DC и DA:
DC*DA= Xdc*Xda + Ydc*Yda = (16)+(0)= 16
3) Находим модули векторов DC и DA:
|DC| = √(X²+Y²) = √(4+36) = √40
|DA| = √(64+0) = 8
CosD= DC*DA/(|DC|*|DA|) = 16/16√10 ≈0,316 Угол D ≈ 72°.
Все углы четырехугольника меньше 180°, значит он выпуклый, что и надо было проверить.
Проверим арифметику: сумма углов нашего четырехугольника равна:
72°+139°+77°+72° = 360°. На удивление, совпало.