Пусть есть пирамида SABCD. Так как пирамида правильная, в основании лежит квадрат ABCD со стороной 14 см. Основание высоты пирамиды совпадает с центром квадрата. Боковые грани равнобедренные треугольники. Высота боковой грани – апофема. Полная поверхность S = Sбок + Sосн , Sбок = Pl/2 , где Р периметр основания, Sосн = a^2, Sосн = 14·14 = 196 (смˆ2), Р = 4·а = 4·14 = 56 (см). Найдем апофему Рассмотрим треугольник , который образует апофема, высота пирамиды и отрезок, соединяющий основание апофемы и центр квадрата и равен половине стороны квадрата 7 см. Треугольник прямоугольный, отрезок - катет, апофема – гипотенуза , угол 45°, апофема = катет/cos 45° = 7/cos 45° = 7/√2/2 = 7√2 ; Sбок = 56·7√2/2 = 196√2, S = 196√2 + 196 = 196(1 +√2) Смˆ2
Рассмотрим треугольники AOC и BOD.
угол AOC = углу BOD (как вертикальные)
AO=OB так ка точка О является серединой AB..
OC=OD так как точка О является серединой CD.
треугольники равны по двум сторонам и углу между ними, то есть по первому признаку равенства треугольников, следовательно
Треугольник AOC = треугольнику BOD.
Значит угол AOC = углу DOB = 115
угол ACO = углу ODB = 20, тогда OAC = углу DBO = 180-(20 + 115) = 45 градусов.
ответ: угол ОАС= 45 градусам.
Надеюсь
Можешь отметить мой ответ как лучший?