Треугольники АВF и АСF равны (это прямоугольные треугольники, у которых равны гипотенузы АВ и АС (как касательные из одной точки к окружности) и общий катет АF. Значит Sabf=Sacf. Если Sdecf = Sabd, то Sfbd= Seda. Тогда Scbe=Sabe (из равных площадей вычитаем равные площади, значит оставшиеся площади равны). В треугольнике АВС отрезок ВЕ, проведенный из вершины угла В к противоположной стороне, делит площадь этого треугольника пополам, так как Sabe и Sbec состоят из равновеликих частей (Sabd+Sade)=(Sbdf+Sdecf). Следовательно, ВЕ - медиана треугольника АВС. Рассмотрим <CВD и <АВЕ. Эти углы равны, так как <CВD вписанный, опирающийся на дугу СD, а <ABD (<ABE) - угол, образованный касательной к окружности и секущей, равен половине дуги ВD. Но дуги CD и BD равны (так как равны центральные углы ВОD и СОD, опирающиеся на эти дуги), значит <CВЕ и <АВЕ равны. Следовательно, ВЕ - биссектриса угла СВА. Но если в треугольнике АВС биссектриса и медиана совпадают, значит этот треугольник равнобедренный и стороны СВ и ВА равны. Но мы знаем, что ВА=АС, как касательные к окружности, проведенные из одной точки. Значит треугольник АВС равносторонний и <ВСА = 60°. <OCA = 90° (радиус к касательной в точку касания), тогда <OCB = <OCA-<BCA=90°-60° = 30°. ответ: угол ОСВ = 30°
б Площа квдарата вимірюється за формолю S=a², де а сторона квадрата. Нехай сторона більшого квадрата дорівнює 3a, тоді меншого дорівнює 2a. Площа меншого квадрата дорівнює 8см², отже 2a*2a=8 4a²=8 a²=2 a=√2 Сторона більшого квадрата дорівнює 3a=3*√2=3√2, отже S= 3√2*3√2=9*2=18см²
б Квадрати між собою зажди подібні, тому відношення площ дорівнбє відношенню сторін піднесених до другої степені. Нехай S₁-площа більшого квадарата, а S₂=8-площа меншого квадрата, 3x-сторона більшого квадрату, 2х-сторона меншого квадрату.
гипотенузы АВ и АС (как касательные из одной точки к окружности) и общий катет АF. Значит Sabf=Sacf. Если Sdecf = Sabd, то Sfbd= Seda. Тогда Scbe=Sabe (из равных площадей вычитаем равные площади, значит оставшиеся площади равны).
В треугольнике АВС отрезок ВЕ, проведенный из вершины угла В к противоположной стороне, делит площадь этого треугольника пополам, так как Sabe и Sbec состоят из равновеликих частей (Sabd+Sade)=(Sbdf+Sdecf).
Следовательно, ВЕ - медиана треугольника АВС.
Рассмотрим <CВD и <АВЕ. Эти углы равны, так как <CВD вписанный, опирающийся на
дугу СD, а <ABD (<ABE) - угол, образованный касательной к окружности и секущей,
равен половине дуги ВD. Но дуги CD и BD равны (так как равны центральные углы ВОD
и СОD, опирающиеся на эти дуги), значит <CВЕ и <АВЕ равны.
Следовательно, ВЕ - биссектриса угла СВА.
Но если в треугольнике АВС биссектриса и медиана совпадают, значит этот треугольник равнобедренный и стороны СВ и ВА равны.
Но мы знаем, что ВА=АС, как касательные к окружности, проведенные из одной точки. Значит треугольник АВС равносторонний и <ВСА = 60°.
<OCA = 90° (радиус к касательной в точку касания), тогда
<OCB = <OCA-<BCA=90°-60° = 30°.
ответ: угол ОСВ = 30°
Площа квдарата вимірюється за формолю S=a², де а сторона квадрата. Нехай сторона більшого квадрата дорівнює 3a, тоді меншого дорівнює 2a.
Площа меншого квадрата дорівнює 8см², отже
2a*2a=8
4a²=8
a²=2
a=√2
Сторона більшого квадрата дорівнює 3a=3*√2=3√2, отже S= 3√2*3√2=9*2=18см²
б
Квадрати між собою зажди подібні, тому відношення площ дорівнбє відношенню сторін піднесених до другої степені. Нехай S₁-площа більшого квадарата, а S₂=8-площа меншого квадрата, 3x-сторона більшого квадрату, 2х-сторона меншого квадрату.
Відповідь: S=18cm²