Итак, у нас есть прямоугольный треугольник ABH. Угол А равен 60, значит, угол В равен 30 градусов. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, то есть АН=половина АВ=4см.Нам дано, что АД=8см, мы вычислили, что АН=4 см, следовательно, ДН тоже равна 4 см. Т.к. мы имеем прямоугольную трапецию, то BC = ДН = 4 см.Осталось вычислить ВН. По теореме Пифагора находим, что она равна 4 корням из 3.Подставляем в формулу:Площадь трапеции = полусумма оснований умножить на высоту.Площадь трапеции = (4+8)\2*4 корня из 3 = 24 корня из трех.
Зачем шестиугольник? Если уже дан правильный треугольник, то зная высоту, очень легко найти периметр треугольника, зная, что высота в нем является медианой. И тогда обозначив сторону за х, можно записать теорему Пифагора: х² = 81 + (х/2)². И, решая это уравнение, получаем, что х = 6√3. Откуда периметр треугольника 18√3. Скорее всего, речь шла в задаче о периметре шестиугольника... Если так, то нам достаточно найти радиус окружности, описанной около равностороннего треугольника R. Для шестиугольника этот радиус будет являться радиусом вписанной окружности r. Поэтому r = a√3/3 = 6 (где а - сторона треугольника) Ну а сторона шестиугольника находится по формуле: а = 2r/√3. Значит сторона шестиугольника равна: 2*6/√3 = 4√3. Периметр шестиугольника равен 24√3
Т.к. мы имеем прямоугольную трапецию, то BC = ДН = 4 см.Осталось вычислить ВН. По теореме Пифагора находим, что она равна 4 корням из 3.Подставляем в формулу:Площадь трапеции = полусумма оснований умножить на высоту.Площадь трапеции = (4+8)\2*4 корня из 3 = 24 корня из трех.
Зачем шестиугольник? Если уже дан правильный треугольник, то зная высоту, очень легко найти периметр треугольника, зная, что высота в нем является медианой. И тогда обозначив сторону за х, можно записать теорему Пифагора: х² = 81 + (х/2)². И, решая это уравнение, получаем, что х = 6√3. Откуда периметр треугольника 18√3.
Скорее всего, речь шла в задаче о периметре шестиугольника...
Если так, то нам достаточно найти радиус окружности, описанной около равностороннего треугольника R. Для шестиугольника этот радиус будет являться радиусом вписанной окружности r. Поэтому r = a√3/3 = 6 (где а - сторона треугольника)
Ну а сторона шестиугольника находится по формуле: а = 2r/√3. Значит сторона шестиугольника равна: 2*6/√3 = 4√3.
Периметр шестиугольника равен 24√3