Задача 22:
∠B=180°-∠ABD=180°-112°=68° - как смежные
ΔABC - равнобедренный (AB=BC), поэтому ∠A=∠C
∠A=∠C=(180°-68°):2=112°:2=56°
ответ: ∠A=∠C=56°
Задача 24:
ΔABC - равнобедренный (AC=BC), поэтому ∠A=∠B
∠A=∠B=(180°-75°):2=105°:2=52,5°
∠B=∠DBK=52,5° - как вертикальные
ответ: ∠DBK=52,5°
Задача 29:
∠DAB=180°-48°=132° - как смежные
ΔABD - равнобедренный (AD=AB), поэтому ∠BDA=∠ABD
∠BDA=∠ABD=(180°-132°):2=48°:2=24°
ΔCBE - равнобедренный (CB=CE), поэтому ∠CBE=∠CEB
∠CBE=∠CEB=56°
Отсюда ∠BCE=180°-56°*2=180-112°=68°
∠ACB=180°-∠BCE=180°-68°=112° - как смежные
∠ABC=180°-(∠ACB+∠BAC)=180°-(112°+48°)=180°-160°=20°
∠DBE=∠ABD+∠ABC+∠CBE=20°+24°+56°=100°
ответ: ∠DBE=100°, ∠D=24°
Задача 25:
∠DОC=180°-∠DОA=180°-137°=43°
∠DОC=∠AОB=43° - как вертикальные
ΔDОC - равнобедренный (DО=ОC), поэтому ∠D=∠C
∠D=∠C=(180-43°):2=68,5°
ΔAОB - равнобедренный (AB=АО), поэтому ∠AОB=∠В
∠AОB=∠В=43°
∠A=180°-43°*2=180°-86°=94°
ответ: ∠A=94°, ∠В=43°, ∠C=68,5°, ∠D=68,5°
Пусть радиус самого большого полукруга R, тогда R = 126/2 = 63.
Пусть радиус среднего полукруга r₁, а радиус самого малого полукруга
r₂. Тогда r₂= 25.
r₁ = (126 - 2·25)/2 = (126 - 50)/2 = 76/2 = 38.
Пусть площадь большого полукруга S, среднего полукруга - S₁, малого полукруга S₂.
Тогда (по формуле площади круга, с учётом того, что у нас полукруги):
S = π·R²/2,
S₁ = π·r₁²/2,
S₂ = π·r₂²/2.
Тогда площадь заштрихованной области будет
= S - S₁ - S₂ = (π·R²/2) - (π·r₁²/2) - (π·r₂²/2) =
= π·( R² - r₁² - r₂²)/2 = π·( 63² - 38² - 25² )/2 = π·( 3969 - 1444 - 625)/2 =
= π·1900/2 = 950π.
Задача 22:
∠B=180°-∠ABD=180°-112°=68° - как смежные
ΔABC - равнобедренный (AB=BC), поэтому ∠A=∠C
∠A=∠C=(180°-68°):2=112°:2=56°
ответ: ∠A=∠C=56°
Задача 24:
ΔABC - равнобедренный (AC=BC), поэтому ∠A=∠B
∠A=∠B=(180°-75°):2=105°:2=52,5°
∠B=∠DBK=52,5° - как вертикальные
ответ: ∠DBK=52,5°
Задача 29:
∠DAB=180°-48°=132° - как смежные
ΔABD - равнобедренный (AD=AB), поэтому ∠BDA=∠ABD
∠BDA=∠ABD=(180°-132°):2=48°:2=24°
ΔCBE - равнобедренный (CB=CE), поэтому ∠CBE=∠CEB
∠CBE=∠CEB=56°
Отсюда ∠BCE=180°-56°*2=180-112°=68°
∠ACB=180°-∠BCE=180°-68°=112° - как смежные
∠ABC=180°-(∠ACB+∠BAC)=180°-(112°+48°)=180°-160°=20°
∠DBE=∠ABD+∠ABC+∠CBE=20°+24°+56°=100°
ответ: ∠DBE=100°, ∠D=24°
Задача 25:
∠DОC=180°-∠DОA=180°-137°=43°
∠DОC=∠AОB=43° - как вертикальные
ΔDОC - равнобедренный (DО=ОC), поэтому ∠D=∠C
∠D=∠C=(180-43°):2=68,5°
ΔAОB - равнобедренный (AB=АО), поэтому ∠AОB=∠В
∠AОB=∠В=43°
∠A=180°-43°*2=180°-86°=94°
ответ: ∠A=94°, ∠В=43°, ∠C=68,5°, ∠D=68,5°
Пусть радиус самого большого полукруга R, тогда R = 126/2 = 63.
Пусть радиус среднего полукруга r₁, а радиус самого малого полукруга
r₂. Тогда r₂= 25.
r₁ = (126 - 2·25)/2 = (126 - 50)/2 = 76/2 = 38.
Пусть площадь большого полукруга S, среднего полукруга - S₁, малого полукруга S₂.
Тогда (по формуле площади круга, с учётом того, что у нас полукруги):
S = π·R²/2,
S₁ = π·r₁²/2,
S₂ = π·r₂²/2.
Тогда площадь заштрихованной области будет
= S - S₁ - S₂ = (π·R²/2) - (π·r₁²/2) - (π·r₂²/2) =
= π·( R² - r₁² - r₂²)/2 = π·( 63² - 38² - 25² )/2 = π·( 3969 - 1444 - 625)/2 =
= π·1900/2 = 950π.