1) Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
АС - это катет прямоугольного треугольника АСD.
АС лежит против угла 30°, следовательно равен половине АD, которая является большим основанием трапеции:
АС = 24 : 2 = 12 см.
2) Треугольник АВС так же является прямоугольным.
В нём угол В = 90° согласно условию, а угол ВАС равен углу D, так как стороны этих углов взаимно перпендикулярны, а углы со взаимно перпендикулярными сторонами равны.
3) Катет ВС треугольника АВС лежит против угла 30°, следовательно равен половине гипотенузы АС:
ВС = 12 : 2 = 6 см.
4) В трапеции АВСD сторона ВС - это меньшее основание, которое надо было найти. Мы его нашли: ВС = 6см.
Для того, чтобы найти периметр треугольника, надо знать длины всех его сторон. Их легко можно найти по следующей формуле:
d=корень из (х2-х1)^2+(у2-у1)^2. Подставим числа в формулу и получим:
Модуль АВ=корень из (-1-0)^2+(0-(-3))^2=корень из 10
Модуль ВС=корень из (5-(-1))^2+(5-0)^2=корень из 61
Модуль АС=корень из (5-0)^2+(5-(-3))^2=корень из 89. Теперь, мы можем найти периметр треугольника АВС, для этого сложим все полученные нами величины:
Р=корень из 10+корень из 61+корень из 89. Это наш ответ, так как в другом виде записать это нельзя.
6 см
Объяснение:
1) Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
АС - это катет прямоугольного треугольника АСD.
АС лежит против угла 30°, следовательно равен половине АD, которая является большим основанием трапеции:
АС = 24 : 2 = 12 см.
2) Треугольник АВС так же является прямоугольным.
В нём угол В = 90° согласно условию, а угол ВАС равен углу D, так как стороны этих углов взаимно перпендикулярны, а углы со взаимно перпендикулярными сторонами равны.
3) Катет ВС треугольника АВС лежит против угла 30°, следовательно равен половине гипотенузы АС:
ВС = 12 : 2 = 6 см.
4) В трапеции АВСD сторона ВС - это меньшее основание, которое надо было найти. Мы его нашли: ВС = 6см.
ответ: 6 см