АБ Установіть відповідність між умовами задач (1-4) і відповідями
до них (А-Д).
1 Знайдіть кут В, якщо кут а більший за нього А 50°
на 30° (рис. 2)
Б 40°
E. 2 Знайдіть менший кут трикутника АВС, якщо
A:ZB:/с = 3:2:4
в 65°
3 Знайдіть кут ОАВ, якщо AOB = 50° (рис. 3)
4 BN дотична, BC
діаметр; Z ABC = 40°
(рис. 4). Знайдіть кут ABN
д60°
2
3
г750
4
-
T
D
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30
проведем высоту к хорде.
малый треугольник - прямоугольник.
Катет, лежащий напротив угла в 30, равен 1\2 гипотенузы:
0,8м = 80см
80:2 = 40см
Найдем второй катет по т.Пифагора:
√(80²-40²) = √(6400 - 1600) = √4800 = √3*16*100 = 40√3
Найдем хорду: 40√3*2 = 80√3.
Второй
Найдем острые углы треугольника, они равны, т.к. треугольник равнобедренный:
180-120 = 60
60:2 = 30
По теореме синусов: b\sinb = c\sinc
b = c*sinb/sinс
b = 80*√3/2*2 = 80√3