Объяснение:
Если известны длины всех сторон , то высоту найдем по формуле
h = 2/a √p(p-a)(p-b)(p-c),
где h - длина высоты треугольника, p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.
р=(8+10+12):2=15 см.
Наибольшая высота падает на наименьшую сторону, поэтому
h₁ = 2/8 * √(15*7*5*3) = 2/8 * √1575 = 1/4 * 15√7 = (15√7)/4 см
Наименьшая высота падает на наибольшую сторону, поэтому
h₂ = 2/12 * √(15*7*5*3) = 1/6 * √1575 = 1/6 * 15√7 = (15√7)/6 см.
1) по формуле Герона
Полупериметр р=(10+10+12):2=16 см
S=√(p(p-a)(p-b)(p-c)=√(16*6*6*4)=√2304=48 см²
48=1/2 * 10 * h₁
h₁=9,6 см
48=1/2 * 12 * h₂
h₂=8 см.
2) по формуле Герона
Полупериметр р=(17+17+16):2=25 дм
S=√(p(p-a)(p-b)(p-c)=√(25*8*8*9)=√14400=120 дм²
120=1/2 * 17 * h₁
h₁=14 2/17 дм
120=1/2 * 16 * h₂
h₂=15 дм.
3) по формуле Герона
Полупериметр р=(4+13+15):2=16 дм
S=√(p(p-a)(p-b)(p-c)=√(16*12*3*1)=√576=24 дм²
24=1/2 * 4 * h₁
h₁=12 дм
48=1/2 * 13 * h₂
h₂=7 5/13 дм.
48=1/2 * 15 * h₃
h₃ = 6 6/7 дм.
Объяснение:
Если известны длины всех сторон , то высоту найдем по формуле
h = 2/a √p(p-a)(p-b)(p-c),
где h - длина высоты треугольника, p - полупериметр, a - длина стороны, на которую падает высота, b и c - длины двух других сторон треугольника.
р=(8+10+12):2=15 см.
Наибольшая высота падает на наименьшую сторону, поэтому
h₁ = 2/8 * √(15*7*5*3) = 2/8 * √1575 = 1/4 * 15√7 = (15√7)/4 см
Наименьшая высота падает на наибольшую сторону, поэтому
h₂ = 2/12 * √(15*7*5*3) = 1/6 * √1575 = 1/6 * 15√7 = (15√7)/6 см.
1) по формуле Герона
Полупериметр р=(10+10+12):2=16 см
S=√(p(p-a)(p-b)(p-c)=√(16*6*6*4)=√2304=48 см²
48=1/2 * 10 * h₁
h₁=9,6 см
48=1/2 * 12 * h₂
h₂=8 см.
2) по формуле Герона
Полупериметр р=(17+17+16):2=25 дм
S=√(p(p-a)(p-b)(p-c)=√(25*8*8*9)=√14400=120 дм²
120=1/2 * 17 * h₁
h₁=14 2/17 дм
120=1/2 * 16 * h₂
h₂=15 дм.
3) по формуле Герона
Полупериметр р=(4+13+15):2=16 дм
S=√(p(p-a)(p-b)(p-c)=√(16*12*3*1)=√576=24 дм²
24=1/2 * 4 * h₁
h₁=12 дм
48=1/2 * 13 * h₂
h₂=7 5/13 дм.
48=1/2 * 15 * h₃
h₃ = 6 6/7 дм.