Нужно искать треугольники, в которых "присутствуют" основания трапеции... т.к. центр окружности лежит на большем основании, то это основание и будет диаметром окружности))) т.е. радиус окружности нам известен... меньшее основание связано в треугольник (равнобедренный) с радиусами окружности... и высота трапеции будет высотой этого треугольника))) осталось найти площадь треугольника (по формуле Герона, т.к. три стороны треугольника известны))) и из площади найти высоту треугольника=высоту трапеции...
ответ: треугольнике АВС угол АСВ опирается на диаметр АВ, следовательно его величина равна 900, а треугольник АВС прямоугольный.
По условию, СМ перпендикулярно АВ, тогда отрезок СН - высота СН треугольника АВС. В прямоугольном треугольнике АСН катет СН лежит против угла 300, а следовательно равен половине длины гипотенузы АС.
СН = АС / 2 = 8 / 2 = 4 см.
Диаметр окружности АВ делит хорду СМ пополам, так как они перпендикулярны, тогда длина хорды СМ = 2 * СН = 2 * 4 = 8 см.
т.к. центр окружности лежит на большем основании, то это основание и будет диаметром окружности)))
т.е. радиус окружности нам известен...
меньшее основание связано в треугольник (равнобедренный) с радиусами окружности... и высота трапеции будет высотой этого треугольника)))
осталось найти площадь треугольника (по формуле Герона, т.к. три стороны треугольника известны))) и из площади найти высоту треугольника=высоту трапеции...
ответ: треугольнике АВС угол АСВ опирается на диаметр АВ, следовательно его величина равна 900, а треугольник АВС прямоугольный.
По условию, СМ перпендикулярно АВ, тогда отрезок СН - высота СН треугольника АВС. В прямоугольном треугольнике АСН катет СН лежит против угла 300, а следовательно равен половине длины гипотенузы АС.
СН = АС / 2 = 8 / 2 = 4 см.
Диаметр окружности АВ делит хорду СМ пополам, так как они перпендикулярны, тогда длина хорды СМ = 2 * СН = 2 * 4 = 8 см.
ответ: Длина хорды СМ равна 8 см.
Объяснение: