S(трап) = 1/2(осн1 + осн 2) * высота; основания есть, высоту надо найти. Предлагаю, обозначения АВСД - данная трапеция, (рисуем картину), АВ=13 см СД=15 см ВС=5 см, АД=19 см S(ABCD)-?
Решение Пусть х см = отрезок АН, ( ВН - высота, опущенная из вершины В трапеции); тогда (19-5-х) = 14-х см = РД ( СР высота, опущенная из вершины С). Так как треугольник АВН ( уг Н=90*) и тр ДСР (уг Р=90*) прямоугольные и высоты в трапеции равны, то выразим высоту трапеции (ВН =СР) по теореме Пифагора из двух указанных треугольников, получаем уравнение: 169-х^2=225-(14-x)^2 169-x2=225-196+28x-x2 28x = 140 x=5 сторона АН треуг АВН
По т Пифагора к тр АВН найдем ВН, получаем: ВН=√(169-25) = √144 = 12 см - высота трапеции
Объяснение:
Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD =45°.
Предлагаю, обозначения
АВСД - данная трапеция, (рисуем картину),
АВ=13 см
СД=15 см
ВС=5 см,
АД=19 см
S(ABCD)-?
Решение
Пусть х см = отрезок АН, ( ВН - высота, опущенная из вершины В трапеции); тогда (19-5-х) = 14-х см = РД ( СР высота, опущенная из вершины С).
Так как треугольник АВН ( уг Н=90*) и тр ДСР (уг Р=90*) прямоугольные и высоты в трапеции равны, то выразим высоту трапеции (ВН =СР) по теореме Пифагора из двух указанных треугольников, получаем уравнение:
169-х^2=225-(14-x)^2
169-x2=225-196+28x-x2
28x = 140
x=5 сторона АН треуг АВН
По т Пифагора к тр АВН найдем ВН, получаем:
ВН=√(169-25) = √144 = 12 см - высота трапеции
S(ABCD)= 1/2 * (BC+AD) * BH
S(ABCD) = 1/2 * 24 * 12 = 12*12 =144 кв см