Всего бочек 21, значит каждому купцу в сумме должно достаться по 7 бочек
Теперь делим сам мёд:
Пусть половина бочки это одна доля. Тогда в полных бочках содержится 14 долей, а в полупустых 7 долей, всего 21 доля, из которых каждому купцу должно достаться по 7 долей. Исходя из этого, бочки следует распределить следующим образом:
Сначала нужно найти АС и СВ (Так как это катеты соответственно прилежащий и противолежащий углу А) по Теореме Пифагора: (3х)^2+(5x)^2=34^2; 9x^2+25x^2=34^2. Значит, 34х^2 = 34^2. Значит единица измерения сторон треугольника равна \sqrt{34}.
Аналогично найдем, единицу измерения треугольника АСH (3y)^2+(5y)^2=(5sqrt{34})^2
9y^2+25y^2=25*34; 34y^2=25*34; y^2=25; y=5. CH=3y, AH = 5y (Так как это катеты соответственно противолежащий и прилежащий углу А),то CH=15, AH=25. Так как HB = AB - AH, то HB = 34 - 25 = 9.
Всего бочек 21, значит каждому купцу в сумме должно достаться по 7 бочек
Теперь делим сам мёд:
Пусть половина бочки это одна доля. Тогда в полных бочках содержится 14 долей, а в полупустых 7 долей, всего 21 доля, из которых каждому купцу должно достаться по 7 долей. Исходя из этого, бочки следует распределить следующим образом:
1 купец: 3 полных бочки, 1 полупустая, 3 пустых. Всего бочек - 7, мёда - 3,5 бочки.
2 купец: 2 полных бочки, 3 полупустых, 2 пустых. Всего бочек - 7, мёда - 3,5 бочки.
3 купец: 2 полных бочки, 3 полупустых, 2 пустых. Всего бочек - 7, мёда - 3,5 бочки.
Сначала нужно найти АС и СВ (Так как это катеты соответственно прилежащий и противолежащий углу А) по Теореме Пифагора: (3х)^2+(5x)^2=34^2; 9x^2+25x^2=34^2. Значит, 34х^2 = 34^2. Значит единица измерения сторон треугольника равна \sqrt{34}.
Аналогично найдем, единицу измерения треугольника АСH (3y)^2+(5y)^2=(5sqrt{34})^2
9y^2+25y^2=25*34; 34y^2=25*34; y^2=25; y=5. CH=3y, AH = 5y (Так как это катеты соответственно противолежащий и прилежащий углу А),то CH=15, AH=25. Так как HB = AB - AH, то HB = 34 - 25 = 9.
ответ: BH = 9.