Пусть точка касания будет В, секущая АС, ближняя к А точка её пересечения с окружностью К. Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть. По этой теореме АВ²=АС:АК 144=18*АК АК=144:18=8⇒ СК=18 - 8=10 Соединим центр окружности с С и К. ∆ СОК - равнобедренный (боковые стороны - радиусы). Расстояние от точки до прямой - перпендикуляр. ОН⊥СК⇒ ОН - высота и медиана равнобедренного ∆ СОК. СН=КН=8:2=4 По т. Пифагора ОК=√(ОН²+КН²)=5 см
Признаки равенства прямоугольных треугольников : 1. Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. 2. Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. 4. Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Если из точки, лежащей вне окружности, проведены касательная и
секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть.
По этой теореме АВ²=АС:АК
144=18*АК
АК=144:18=8⇒
СК=18 - 8=10
Соединим центр окружности с С и К.
∆ СОК - равнобедренный (боковые стороны - радиусы).
Расстояние от точки до прямой - перпендикуляр.
ОН⊥СК⇒ ОН - высота и медиана равнобедренного ∆ СОК.
СН=КН=8:2=4
По т. Пифагора ОК=√(ОН²+КН²)=5 см
1. Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
2. Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
4. Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.