рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.
Діагоналі ромба перпендикулярні і точкою перетину діляться навпіл.
Виходячи з цього св-ва знайдемо їх полусумму, яка так само є сумою катетів будь-якого з п / у трикутників, утворених Цими діагоналями:
d1 + d2 = 61
(D1 + d2) / 2 = 31
d1 = x; d2 = (31-x)
Складемо рівняння на основі теореми Піфагора:
625 = x ^ 2 + (31-x) ^ 2
2x ^ 2-62x + 336 = 0
x ^ 2-31x + 168 = 0
D = 289;
x1 = 7
x2 = 24
Ну так як 31-7 = 24, то катети будуть 24см і 7см
Діагоналі будуть в 2 рази довше, тобто 48см і 14см
S = 48 * 14 * 1/2 = 336 (см2)
Объяснение:
рассмотрим треугольники abc и a1b1c1, у которых ав = a1b1, ас = a1c1 ∠ а = ∠ а1 (см. рис.2). докажем, что δ abc = δ a1b1c1.
так как ∠ а = ∠ а1, то треугольник abc можно наложить на треугольник а1в1с1 так, что вершина а совместится с вершиной а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и a1c1. поскольку ав = a1b1, ас = а1с1, то сторона ав совместится со стороной а1в1 а сторона ас — со стороной а1c1; в частности, совместятся точки в и в1, с и c1. следовательно, совместятся стороны вс и в1с1. итак, треугольники abc и а1в1с1 полностью совместятся, значит, они равны.