2. Обратно, против большего угла лежит большая сторона.
1. Дано: АВ>АС
Доказать: ∠С>∠В.
Доказательство: Отложим отрезок AD равный отрезку АС и тогда точка D будет лежать между точек А и В. Луч CD рассечёт угол АСВ на два угла, при этом ∠1=∠2. ΔАСВ состоит из углов ∠1 и ∠3. ∠2 – внешний для треугольника CDB, значит он больше угла В.
Рис. 1. Теорема о соотношении между сторонами и углами треугольника
AD=AC<AB
∠1=∠2<∠ACB
∠2=∠B+∠3>∠B
∠1>∠B
∠ACB>∠B, что и требовалось доказать.
2. Дано: ∠С>∠В
Доказать: ∠АВ>∠AC
Доказательство: Докажем методом от противного.
Рис. 2. Обратная теорема о соотношении между сторонами и углами треугольника , но ∠С>∠В по условию, следовательно, остается только случай, если АВ>АС, что и требовалось доказать.
Ещё раз сформулируем теорему и распространим её на все углы треугольника.
Теорема: В треугольнике
1. Против большей стороны лежит больший угол
2. Обратно, против большего угла лежит большая сторона.
Рис. 3. Чертёж к теореме
Если АВ>AC>BC, то ∠C>∠B>∠A.
Если ∠C>∠B>∠A, то АВ>AC>BC.
Следствие 1 из теоремы
Следствие 1: В прямоугольном треугольнике гипотенуза больше катета.
Доказательство:
Рис. 4. Чертёж к следствию 1
∠А+∠В+90=180, ∠А+∠В=90=∠С. Отсюда следует, что ∠А<90, ∠В<90. Значит, СВ<АВ, СА<АВ. Гипотенуза АВ больше одного катета и больше другого катета. Следствие доказано.
Следствие 2 из теоремы
Следствие 2: Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Дано: ∠В=∠С
Доказать: АС=АВ
Доказательство: Докажем методом от противного.
Рис. 5. Чертёж к следствию 2
АВ>АС ∠С>∠В, то есть АВ=АС. Следствие доказано.
Обсудим следствие 2. Треугольник называется равнобедренным, если его две стороны равны. Из этого вытекает его свойство: углы при основании равны. А теперь у нас есть признак, что если углы при какой-либо стороне равны, то треугольник равнобедренный. Мы имеем признак равнобедренного треугольника.
Решение задач
Пример 1: Сравните углы треугольника и выясните, может ли быть угол А тупым, если АВ=АС<ВС.
Рис. 6. Чертёж к примеру 1
АВ=АС ∠С=∠В. АС<ВС ÐВ<ÐА. Мы получили соотношение между углами: ∠С=∠В ∠А=180-(∠В+∠С).
Теорема: В треугольнике
1. Против большей стороны лежит больший угол
2. Обратно, против большего угла лежит большая сторона.
1. Дано: АВ>АС
Доказать: ∠С>∠В.
Доказательство: Отложим отрезок AD равный отрезку АС и тогда точка D будет лежать между точек А и В. Луч CD рассечёт угол АСВ на два угла, при этом ∠1=∠2. ΔАСВ состоит из углов ∠1 и ∠3. ∠2 – внешний для треугольника CDB, значит он больше угла В.
Рис. 1. Теорема о соотношении между сторонами и углами треугольника
AD=AC<AB
∠1=∠2<∠ACB
∠2=∠B+∠3>∠B
∠1>∠B
∠ACB>∠B, что и требовалось доказать.
2. Дано: ∠С>∠В
Доказать: ∠АВ>∠AC
Доказательство: Докажем методом от противного.
Рис. 2. Обратная теорема о соотношении между сторонами и углами треугольника , но ∠С>∠В по условию, следовательно, остается только случай, если АВ>АС, что и требовалось доказать.
Ещё раз сформулируем теорему и распространим её на все углы треугольника.
Теорема: В треугольнике
1. Против большей стороны лежит больший угол
2. Обратно, против большего угла лежит большая сторона.
Рис. 3. Чертёж к теореме
Если АВ>AC>BC, то ∠C>∠B>∠A.
Если ∠C>∠B>∠A, то АВ>AC>BC.
Следствие 1 из теоремы
Следствие 1: В прямоугольном треугольнике гипотенуза больше катета.
Доказательство:
Рис. 4. Чертёж к следствию 1
∠А+∠В+90=180, ∠А+∠В=90=∠С. Отсюда следует, что ∠А<90, ∠В<90. Значит, СВ<АВ, СА<АВ. Гипотенуза АВ больше одного катета и больше другого катета. Следствие доказано.
Следствие 2 из теоремы
Следствие 2: Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Дано: ∠В=∠С
Доказать: АС=АВ
Доказательство: Докажем методом от противного.
Рис. 5. Чертёж к следствию 2
АВ>АС ∠С>∠В, то есть АВ=АС. Следствие доказано.
Обсудим следствие 2. Треугольник называется равнобедренным, если его две стороны равны. Из этого вытекает его свойство: углы при основании равны. А теперь у нас есть признак, что если углы при какой-либо стороне равны, то треугольник равнобедренный. Мы имеем признак равнобедренного треугольника.
Решение задач
Пример 1: Сравните углы треугольника и выясните, может ли быть угол А тупым, если АВ=АС<ВС.
Рис. 6. Чертёж к примеру 1
АВ=АС ∠С=∠В. АС<ВС ÐВ<ÐА. Мы получили соотношение между углами: ∠С=∠В ∠А=180-(∠В+∠С).
Пример: ∠В=∠С=10, тогда ∠А=180-(10+10)=160.
ответ: 1) ∠В=∠С<∠А 2) ∠А может быть тупым.
Объяснение:
1)
∆АВD- прямоугольный треугольник
По теореме Пифагора
ВD=√(AB²-AD²)=√(13²-12²)=√(169-144)=
=√25=5
BD=DC
BC=2*BD=2*5=10
ответ: ВD=10
2)
<RMK=180°- развернутый угол
<КМР=<RMK-<RMP=180°-135°=45°
<KMP=<MPK=45°
∆KMP- равнобедренный прямоугольный треугольник.
КМ=КР
КР=МР/√2=11/√2=5,5√2
ответ: х=5,5√2
3)
cos30°=KL/KR
cos30°=√3/2
√3/2=16/KR
KR=16*2/√3=32/√3=32√3/3
ответ: х=32√3/3
4)
Теорема Пифагора
МN=√(KM²+KN²)=√(12²+16²)=√(144+256)=
=√400=20
KT=KM*KN/MN
KT=12*16/20=9,6
ответ: х=9,6
5)
Теорема Пифагора
АС=√(АК²+КС²)=√(9²+12²)=√(81+144)√225=
=15
ВС=АС=15
ВК=ВС-КС=15-12=3
Теорема Пифагора
АВ=√(АК²+ВК²)=√(3²+9²)=√(9+81)=
=√90=3√10
ответ: х=3√10