В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Pozitivchik1234
Pozitivchik1234
29.12.2022 09:09 •  Геометрия

ABCD параллелограмм. Среди векторов на рис. 8 укажите все пары векторов, которые: 1) коллинеарны; 2) сонаправлены
3) противоположно направлены; 4) имеют одинаковые модули​

Показать ответ
Ответ:
gcgxbxh
gcgxbxh
18.03.2023 20:23
АО = СО = 9 см
ВО = ДО = 5 см
АМ = СМ = √(9²+12²) =√(81+144) = √225 = 15 см
МС = МД = √(5²+12²) =√(25+144) = √169 = 13 см
Расстояния между основаниями? Это как? Стороны и диагонали ромба?
AB = BC = СД = АД = √(9²+5²) =√(81+25) = √106 см
АС и ВД даны по условию.
---
2 варианта, к сожалению!
1) АС - гипотенуза
AO = AC/2 = 7,5 см
О - центр описанной окружности треугольника АВС и поэтому
АК = ВК = СК = √(7,5² + 8,5²) = √(15² + 17²)/2 = √(225+289)/2 = √514/2  см
2) AB - гипотенуза
АВ = √(8² + 15²) = √(64+225) = √289 = 17 см
AO = AВ/2 = 8,5 см
АК = ВК = СК = √(8,5² + 8,5²) = 8,5√2 см

1. через точку пересечения диагоналей ромба авсd проведен к его плоскости перпендикуляр мо длиной 12
1. через точку пересечения диагоналей ромба авсd проведен к его плоскости перпендикуляр мо длиной 12
0,0(0 оценок)
Ответ:
rrrf1
rrrf1
02.04.2021 19:05

M(7,7,11)\; ,\; \; A(0,8,1)\; ,\; \; B(6,0,1)\; ,\; \; C(14,6,1)

1) Высота правильной пирамиды проходит через СЕРЕДИНУ её основания. Основанием правильной четырёхугольной ПИРАМИДЫ служит КВАДРАТ. Его центр совпадает с точкой пересечения ДИАГОНАЛЕЙ, которая является СЕРЕДИНОЙ каждой из диагоналей квадрата.

Найдём координаты точки Н - середины ДИАГОНАЛИ АС:

x=\frac{1}{2}(14+0)=7\; ;\; y=\frac{1}{2}(8+6)=7\; ;\; z=\frac{1}{2}(1+1)=1\; .

Итак, Н(7,7,1) .

Вычислим высоту МН пирамиды:

MH=\sqrt{(7-7)^2+(7-7)^2+(1-11)^2}=\sqrt{0+0+100}=\sqrt{100}=10

2)  Апофема правильной пирамиды - это отрезок, соединяющий ВЕРШИНУ пирамиды с СЕРЕДИНОЙ стороны основания. Найдём координаты точки Р - середины СТОРОНЫ основания АВ:

x=\frac{1}{2}(0+6)=3\; ;\; y=\frac{1}{2}(8+0)=4\; ;\; z=\frac{1}{2}(1+1)=1\; .

Итак,  Р(3,4,1) . Следовательно,

MP=\sqrt{(3-7)^2+(4-7)^2+(1-11)^2}=\sqrt{16+9+100}=\sqrt{125}=5\sqrt5\; .

3)  Площадь боковой поверхности правильной пирамиды равна ПОЛОВИНЕ произведения ПЕРИМЕТРА основания и апофемы пирамиды. Найдём сторону АВ - СТОРОНУ ОСНОВАНИЯ пирамиды:

AB=\sqrt{(6-0)^2+(0-8)^2+(1-1)^2}=\sqrt{36+64+0}=\sqrt{100}=10\; .

ВЫЧИСЛИМ ПЕРИМЕТР ПИРАМИДЫ:  P=4\cdot 10=40  .

Вычислим площадь боковой поверхности пирамиды:

S=\frac{1}{2}\cdot 40\cdot 5\sqrt5=100\sqrt5\; .

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота