По условию углы при основании трапеции равны(т.к. она равнобедренная), следовательно в получившемся прямоугольном треугольнике, образованным диагональю, большим основанием и боковой стороной острые углы равны 60 гр. и 30 гр. Боковая сторона этого треугольника есть катет, лежащий против угла в 30 гр., следовательно он равен произведению другого катета и tg 30. Получаем 6*tg 30=6*V3/3=2V3 Следовательно боковые стороны и меньшее основание равны 2V3. Найдем большее основание. Оно есть гипотенуза в образованном прямоугольном треугольнике. Боковая сторона есть катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр. Большее основание равно 6
Дано не буду писать. Значит в 1. Угол АВС=180-45-75=60. (45-это угол 90 делит биссектриса и получаем по 45). Теперь ищем угол АСВ через большой треугольник. Он получается 180-90-60=30. Во второй пусть угол у меньшего катета равен 60. тогда напротив угол 30. Пусть гипотенуза будет Х, тогда катет, лежащий против угла в 30 градусов, равен половине гипотенузы и будет Х/2. Уравнение "Х+Х/2=3, Х=2", значит гипотенуза равна 2. В 3 большая сторона лежит напротив большего угла, то есть напротив угла А, а меньшая сторона лежит напротив меньшего угла, то есть напротив угла С. В 4 треугольник ДКЕ прямоугольный, угол ВДК=30, 3 лежит против 30 градусов, значит гипотенуза будет 6. а в большом треугольнике катет 6, лежит против угла 30 и гипотенуза ВЕ=12. КЕ=12-3=9
Получаем 6*tg 30=6*V3/3=2V3
Следовательно боковые стороны и меньшее основание равны 2V3.
Найдем большее основание. Оно есть гипотенуза
в образованном прямоугольном треугольнике. Боковая сторона есть катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр.
Большее основание равно 6