В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bogdanoleksenkozo87a
bogdanoleksenkozo87a
25.11.2022 05:38 •  Геометрия

ABCD параллелограмма равнобедренная сторона равна диагональ АВ10см угол А 30 градусов площадь параллелограмма

Показать ответ
Ответ:
Cachu
Cachu
17.11.2021 13:19

\frac{\pi}{12} \: u \: \frac{5\pi}{12} \\

или

15° и 75°

Объяснение:

Обозначим в прямоугольном треугольнике

катеты как a, b

гипотенузу как с (с = 4)

и углы как \alpha \: u \: \beta

Причем углы связаны формулой

\alpha \: = \: 90^o - \beta < = \alpha \: = \: \frac{\pi}{2} - \beta

Тогда площадь треугольника, равная 2, равна половине произведения катетов:

S = \frac{1}{2} \cdot{a}\cdot{b} = 2

Однако для острого угла в прямоугольном треугольнике отношение прилежащего катета к гипотенузе - это косинус угла, а отношение противолежащего катета к гипотенузе - это синус угла

Соответственно, каждый из катетов можно выразить через синус и косинус одного из острых углов:

\cos\alpha = \frac{a}{c} = a = c \cdot \cos \alpha \\ \sin\alpha = \frac{b}{c} = b = c \cdot \sin \alpha \\

Т.к. с = 4, получаем:

a = 4 \cos \alpha \\ b = 4 \sin \alpha \\S = \frac{1}{2} \cdot{a}\cdot{b} = 2 \\ \frac{1}{2} \cdot 4\sin\alpha\cdot{4cos\alpha}=2

Получаем ригонометрическое уравнение:

\frac{1}{2} \cdot4\sin\alpha\cdot{4cos\alpha}=2 \\ 4\sin\alpha\cdot{4cos\alpha}=4 \\ 4\sin\alpha\cdot{cos\alpha}=1\\ 2\sin\alpha\cdot{cos\alpha}= \frac{1}{2 }\\ \sin 2\alpha = \frac{1}{2} \\ 2\alpha = ( - 1)^{k} \arcsin( \frac{1}{2} ) + \pi{k}, k \in Z

\arcsin( \tfrac{1}{2} ) = \frac{\pi}{6} ; \: \pi -\arcsin( \tfrac{1}{2} ) = \frac{5\pi}{6} \\ 2\alpha = ( - 1)^{k} \cdot\frac{\pi}{6} + \pi{k} =\bigg[ \large^{ \frac{ \pi}{6} + 2 \pi{n}, \: \: n \in Z } _{\frac{5\pi}{6} + 2\pi{m} , \: m \in Z} \\ \alpha = \bigg[\large^{ \frac{ \pi}{12} + \pi{n}, \: \: n \in Z } _{\frac{5\pi}{12} + \pi{m}, \: \: m \in Z } \:

Т.к. мы ищем углы в прямоугольном треугольнике, то

0 \leqslant \alpha \leqslant \frac{\pi}{2}

Соответственно попадают в этот интервал только следующие полученные углы:

0 \leqslant \frac{\pi}{12} + \pi{n} \leqslant \frac{\pi}{2} , \: \: n \in Z \\ 0 \leqslant \frac{1}{12} + {n} \leqslant \frac{1}{2} , \: \: n \in Z \\ - \frac{1}{12} \leqslant \frac{1}{12} + {n} - \frac{1}{12} \leqslant \frac{1}{2} - \frac{1}{12} , \: \: n \in Z \\ - \frac{1}{12} \leqslant {n} \leqslant \frac{5}{12} , \: \: n \in Z = n = 0 \\ \alpha = \frac{ \pi }{12} \\

0 \leqslant \frac{5\pi}{12} + \pi{m} \leqslant \frac{\pi}{2} , \: \: m\in Z \\ 0 \leqslant \frac{5}{12} + {m} \leqslant \frac{1}{2} , \: \: m \in Z \\ - \frac{5}{12} \leqslant \frac{5}{12} + {m} - \frac{5}{12} \leqslant \frac{1}{2} - \frac{5}{12} , \: \: m\in Z \\ - \frac{5}{12} \leqslant {m} \leqslant \frac{1}{12} , \: \: m \in Z = m= 0 \\ \alpha = \frac{ 5 \pi }{12} \\

Итак, мы получили 2 пары углов:

\small \alpha = \frac{\pi}{12} = \beta {= } \frac{\pi}{2}{ - }\alpha = \frac{\pi}{2} {- }\frac{\pi}{12} = \frac{5\pi}{12} \\ \small \alpha = \frac{5\pi}{12} = \beta {= } \frac{\pi}{2}{ - }\alpha = \frac{\pi}{2} {- }\frac{5\pi}{12} = \frac{\pi}{12} \\

Очевидно, что это одна и та же пара углов, в зависимости от того, какой катет мы брали за а, а какой за b.

Итак, получаем ответ:

\frac{\pi}{12} \: u \: \frac{5\pi}{12} \\

0,0(0 оценок)
Ответ:
YuliaShckumat
YuliaShckumat
16.01.2022 15:12

Номер 1

Треугольники АВD и DBC равны между собой по второму признаку равенства прямоугольных треугольников-по катету и прилежащему к нему острому углу

DB-общая сторона

<АDB=<BDC

Исходя из этого

AD=AC

Номер 2

Треугольники АВС и АСD равны между собой по третьему признаку равенства треугольников-по трём сторонам

ВС=AD;BA=CD;по условию задачи

АС-общая

Номер 4

Треугольники АВD иСВD равны между собой по второму признаку равенства треугольника-по стороне и двум прилегающим к ней углам

<АВD=<DBC;<ADB=<BDC

DB-общая сторона

В равных треугольниках соответствующие стороны и углы равны между собой,поэтому

<А=<С

Номер 3

Треугольники равны по второму признаку равенства треугольников-по стороне и двум прилежащим к ней углам

<А=<D;AO=OD;

<АОС=<АОВ,как вертикальные

Из равенства треугольников вытекает,что АС=DB

Номер 1

Треугольники АDB и ВDC прямоугольные и равны между собой по 5 признаку равенства прямоугольных треугольников-по катету и гипотенузе

AD=CD;AB=BC по условию задачи

Треугольник АDC-равнобедренный,т к по условию АD=DC,cледовательно-углы при основании равнобедренного треугольника равны между собой

<А=<С

Номер 2

Треугольники равны между собой по второму признаку равенства треугольников-по стороне и двум прилегающим к ней углам

ВО=ОD;<B=<D; <AOB=<COD,как вертикальные

Исходя из равенства треугольников,

АО=ОС

Номер 4

Треугольники равны по первому признаку равенства треугольников

<СВD=<ADB;<ABD=<BDC;

BD-общая сторона

Треугольники равны,а значит равны АС=АD

Номер 3

Треугольники равны по первому признаку равенства треугольников-по двум сторонам и углу между ними

АВ=АD;<BAC=<DAC;по условию задачи

АС-общая сторона

Т к доказано равенства треугольников,то и

<АСD=<ACB

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота