ABCD — прямокутник (рис. 199) . SA = см, АВ = 1 см, AD = 2 см. Користуючись зображенням, знайдіть: 1) довжину відрізка SB; 2) довжину діагоналі АС; 3) довжину відрізка SD; 4) величину кута SBC; 5) величину кута SDC.
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
, где a, b, c - измерения прямоугольного параллелепипеда.
=3 см.
Объём прямоугольного параллелепипеда вычисляется по формуле:
V = a * b * c
1 * 2 * 2 = 4 см³.
ответ: Диагональ равна 3 см; Объём равен 4 см³
2. Находим диагональ основания.
Её половина равна √((6/2)² + (8/2)²) = 5 см.
В задании не оговорено, но примем, что все боковые рёбра равны. Проекция бокового ребра на основание - это и есть половина диагонали основания пирамиды.
Если боковое ребро равно 10 см, то имеем прямоугольный треугольник с основанием 5 см, гипотенузой 10 см и вторым катетом - неизвестной высотой Н.
Н = √(10² - 5²) = √(100 - 25) = √75 = 5√3 см.
Находим объём: V = (1/3)SoH = (1/3)*(6*8)*5√3 = 80√3 см³.
1. Диагональ равна 3 см; Объём равен 4 см³
2. Высота равна 5√3 см; Объём равен 80√3 см³
Объяснение:
1. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений .
, где a, b, c - измерения прямоугольного параллелепипеда.
=3 см.
Объём прямоугольного параллелепипеда вычисляется по формуле:
V = a * b * c
1 * 2 * 2 = 4 см³.
ответ: Диагональ равна 3 см; Объём равен 4 см³
2. Находим диагональ основания.
Её половина равна √((6/2)² + (8/2)²) = 5 см.
В задании не оговорено, но примем, что все боковые рёбра равны. Проекция бокового ребра на основание - это и есть половина диагонали основания пирамиды.
Если боковое ребро равно 10 см, то имеем прямоугольный треугольник с основанием 5 см, гипотенузой 10 см и вторым катетом - неизвестной высотой Н.
Н = √(10² - 5²) = √(100 - 25) = √75 = 5√3 см.
Находим объём: V = (1/3)SoH = (1/3)*(6*8)*5√3 = 80√3 см³.
ответ: Высота равна 5√3 см; Объём равен 80√3 см³