ABCD - прямоугольник, точка E является серединой стороны AD. Укажите верные утверждения : 1) точка А симметрична точке D относительно прямой а.
2) точка B симметрична точке D относительно точки О.
3) точка А симметрична точке D относительно точки Е.
4) точка A симметрична точке С относительно прямой b.
5) точка В симметрична точке D относительно прямой а.
6) точка С симметрична точке D относительно точки О.
жесткая фигура — это фигура, не подверженная деформации. zhestskaya figura соединив дощечки с гвоздей в четырехугольник, можно изменять градусную меру углов четырехугольника, не меняя длины его сторон. можно менять величины углов у пятиугольников, шестиугольников и многоугольников с большим количеством сторон. с треугольником так поступить не удастся. treugolnik zhestskaya figura стороны треугольника определяют его углы однозначно. треугольник не подвержен деформации. поэтому треугольник — жесткая фигура. из всех многоугольников только треугольник является жесткой фигурой. это свойство треугольника используется, в частности, при создании железных ажурных конструкций. мосты, башни, подъемные краны, каркасы зданий, опоры для высоковольтных линий электропередач изготавливают таким образом, чтобы они содержали как можно больше треугольных элементов.
2.жёсткостью треугольника пользуются в строительстве, при конструировании механизмов, различных приспособлений.
1. поверхность грани 96/4=24 длина стороны основания 24/4=6
апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8
0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально -
пусть n боковых граней, s = 96/n сторона основания 24/n
0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.