Известно, что площадь сферы находится по формуле: S = 4*Pi*R*R (четыре пи эр квадрат)
Нам неизвестно, какой радиус у сферы, но известно, что сфера описана около куба, то есть половина внутренней диагонали куба и будет радиусом нашей сферы.
Чтобы найти внутреннюю диагональ куба, воспользуемся формулами для прямоугольного треугольника. Сначала найдём диагональ грани куба: d = 2^0.5 * a = 2^0.5 (корень квадратный из 2) метров
Теперь найдём внутреннюю диагональ: D = (a^2 + b^2)^0.5 = (1 + 2)^0.5 = 3^0.5 (корень квадратный из 3) метров.
Разделив внутреннюю диагональ куба, которая является диаметром сферы, пополам, получим радиус сферы: R = 3^0.5 / 2 метра
Подставим это значение в первую формулу: S = 4 * Pi * (3^0.5 / 2)^2 = 4 * Pi * 3 / 4 = 3Pi = 9.42 квадратных метра
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
S = 4*Pi*R*R (четыре пи эр квадрат)
Нам неизвестно, какой радиус у сферы, но известно, что сфера описана около куба, то есть половина внутренней диагонали куба и будет радиусом нашей сферы.
Чтобы найти внутреннюю диагональ куба, воспользуемся формулами для прямоугольного треугольника. Сначала найдём диагональ грани куба:
d = 2^0.5 * a = 2^0.5 (корень квадратный из 2) метров
Теперь найдём внутреннюю диагональ:
D = (a^2 + b^2)^0.5 = (1 + 2)^0.5 = 3^0.5 (корень квадратный из 3) метров.
Разделив внутреннюю диагональ куба, которая является диаметром сферы, пополам, получим радиус сферы:
R = 3^0.5 / 2 метра
Подставим это значение в первую формулу:
S = 4 * Pi * (3^0.5 / 2)^2 = 4 * Pi * 3 / 4 = 3Pi = 9.42 квадратных метра
ОТВЕТ: Площадь сферы равна 3Pi квадратных метра
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!