Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
Мне проще эту задачу было решить с тригонометрии... но, получив "красивый" ответ --- угол равен 45°, захотелось найти более простое решение (ведь не указано для какого класса решается задача и, возможно, тригонометрия автору еще не известна))) не знаю--получилось ли проще... т.к. один данный угол является половиной другого, то очень хочется связать их в один треугольник... если провести биссектрису угла в 30°, то получим равнобедренный треугольник с углами при основании по 15°, в нем хочется построить высоту... но тогда и к биссектрисе провести перпендикуляр и получим еще один равнобедренный треугольник с углом при вершине 30°))) осталось рассмотреть получившиеся треугольники... один из них (выделила желтым цветом) окажется равносторонним... другой (прямоугольный) окажется равнобедренным... (ярко желтые уголки--по 45°)
но, получив "красивый" ответ --- угол равен 45°,
захотелось найти более простое решение
(ведь не указано для какого класса решается задача и, возможно, тригонометрия автору еще не известна)))
не знаю--получилось ли проще...
т.к. один данный угол является половиной другого,
то очень хочется связать их в один треугольник...
если провести биссектрису угла в 30°, то
получим равнобедренный треугольник с углами при основании по 15°,
в нем хочется построить высоту...
но тогда и к биссектрисе провести перпендикуляр и получим
еще один равнобедренный треугольник с углом при вершине 30°)))
осталось рассмотреть получившиеся треугольники...
один из них (выделила желтым цветом) окажется равносторонним...
другой (прямоугольный) окажется равнобедренным...
(ярко желтые уголки--по 45°)