ABCD является параллелограммом. Точка N- середина отрезка СD,ОМ||АN. Найдите СМ:МD Чертеж на фото хоть в этот раз. Каждый раз задаю вопрос никто не отвечает, приходится опять самой решать
Обе задачи решаются одинаково, с использованием свойства подобных треугольников. Данный в приложении рисунок подойдет к решению обеих задач -------------- 1. Даны две параллельные плоскости и не лежащая между ними точка P. Две прямые, проходящие через точку Р, пересекают ближнюю к точке Р плоскость в точках А1 и А2, а дальнюю в точках В1 и В2 соответственно. Найдите длину отрезка В1В2, если А1А2= 10 см. и РА1:А1В1=2:3
Через любые три точки пространства можно провести плоскость, притом только одну. Плоскость треугольника РВ1В2 пересекает данные по условию плоскости. Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны (свойство). В треугольнике РВ1В2 отрезок А1А2 || В1В2. Соответственные углы при параллельных А1А2 и В1В2 и секущих РВ1 и РВ2 равны, следовательно, треугольники РВ1В2 и РА1А2 подобны. По условию РА1:А1В1=2:3, следовательно, РВ1=РА1+А1В1=5 частей. В1В2: А1А2=РВ1:РА1 В1В2: 10=5:2 2 В1В2=50 см В1В2=25 см ------------------------- 2. Даны две параллельные плоскости и не лежащая между ними точка P.Две прямые, проходящие через точку Р, пересекают ближнюю к точке Р плоскость в точкахА1 и А2, а дальнюю в точках В1 и В2 соответственно. Найдите длину отрезка В1В2, если А1А2= 6 см. и РА1:А1В1=3:2 Решение совершенно аналогично решению первой задачи. РВ1=3+2=5 (частей) В1В2: А1А2=РВ1:РА1 В1В2: 6=5:3 :3 В1В2=30 см В1В2=10 см
Найдем сторону квадрата. Сторона треугольника АС - диагональ квадрата. Следовательно, угол ОАС в этом треугольнике равен 90:2 = 45 градусов. Обозначим сторону квадрата за Х. Тогда АС = Х√2 (как диагональ квадрата), АО = Х/2 (по условию т.О - середина стороны). Площадь треугольника АОС равна 1/2*Х√2*Х/2*sin45° = X^2/4. Сторона ОС треугольника равна (из треугольника ВОС - он прямоугольный, с катетами Х/2 и Х) Х√5/2.
Радиус описанной возле этого треугольника окружности равен: (Х/2*Х√5/2*Х√2)/(4*Х^2/4) = Х*√10/4. Что по условию равно √10: Х*√10/4 = √10, откуда Х = 4.
Таким образом, сторона квадрата равна 4 см. Периметр - сумма сторон квадрата - равен 4*4 = 16 см.
Данный в приложении рисунок подойдет к решению обеих задач
--------------
1. Даны две параллельные плоскости и не лежащая между ними точка P.
Две прямые, проходящие через точку Р, пересекают ближнюю к точке Р плоскость в точках А1 и А2, а дальнюю в точках В1 и В2 соответственно. Найдите длину отрезка В1В2, если А1А2= 10 см. и РА1:А1В1=2:3
Через любые три точки пространства можно провести плоскость, притом только одну.
Плоскость треугольника РВ1В2 пересекает данные по условию плоскости.
Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны (свойство).
В треугольнике РВ1В2 отрезок А1А2 || В1В2.
Соответственные углы при параллельных А1А2 и В1В2 и секущих РВ1 и РВ2 равны, следовательно, треугольники РВ1В2 и РА1А2 подобны.
По условию РА1:А1В1=2:3, следовательно, РВ1=РА1+А1В1=5 частей. В1В2: А1А2=РВ1:РА1
В1В2: 10=5:2
2 В1В2=50 см
В1В2=25 см
-------------------------
2. Даны две параллельные плоскости и не лежащая между ними точка P.Две прямые, проходящие через точку Р, пересекают ближнюю к точке Р плоскость в точкахА1 и А2, а дальнюю в точках В1 и В2 соответственно. Найдите длину отрезка В1В2, если А1А2= 6 см. и РА1:А1В1=3:2
Решение совершенно аналогично решению первой задачи.
РВ1=3+2=5 (частей)
В1В2: А1А2=РВ1:РА1
В1В2: 6=5:3
:3 В1В2=30 см
В1В2=10 см
Найдем сторону квадрата.
Сторона треугольника АС - диагональ квадрата.
Следовательно, угол ОАС в этом треугольнике равен 90:2 = 45 градусов.
Обозначим сторону квадрата за Х.
Тогда АС = Х√2 (как диагональ квадрата), АО = Х/2 (по условию т.О - середина стороны).
Площадь треугольника АОС равна 1/2*Х√2*Х/2*sin45° = X^2/4.
Сторона ОС треугольника равна (из треугольника ВОС - он прямоугольный, с катетами Х/2 и Х) Х√5/2.
Радиус описанной возле этого треугольника окружности равен:
(Х/2*Х√5/2*Х√2)/(4*Х^2/4) = Х*√10/4.
Что по условию равно √10: Х*√10/4 = √10, откуда Х = 4.
Таким образом, сторона квадрата равна 4 см.
Периметр - сумма сторон квадрата - равен 4*4 = 16 см.
ответ: 16 см.