Abcda1 b1 c1 d1 прямоугольный параллелепипед. k середина ребра cd построить угол прямой b1k с плоскостью аa1 b1b (построение описать) (буду ) с наступающим
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
Объем конуса вычисляется по формуле: v = 1/3 * п * r^2 * h для удобства лучше рассматривать треугольник, полученный в результате осевого сечения, допустим авс. плоскость, параллельна основанию, пересекает этот треугольник по прямой мк. поскольку плоскость параллельна основанию и проходит через середину высоты, то мк - средняя линия треуг. авс и мк =ас/2. значит в полученном конусе вдвое меньше высота и радиус. тогда объем меньшего конусо: v = 1/3 * п * (r/2)^2 * h/2 = 1/3 * п * (r^2)/4 * h/2 = 1/3 * п * (r^2 * h) / 8 сравнив формулы объема конусов видно, что объем второго конуса меньше в 8 раз. v = 40 ^ 8 = 5.
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
далее все очевидно
d*cos(60) = a/2; sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (sбок*cos( это 64/3. а вся площадь поверхности будет 64.