В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Таким же образом, используя формулу для площади треугольника, можно доказать и теорему о биссектрисе внутреннего угла треугольника.
Теорема (о биссектрисе внутреннего угла треугольника).
Если AA1 ¾ биссектриса угла A треугольника ABC, то
BA1 : A1 C = BA : AC.
Доказательство. Пусть угол при вершине A в треугольнике ABC равен 2a. Рассмотрим треугольники BAA1 и CAA1 (см. рис.). Их площади относятся как отрезки BA1 и A1C, поскольку высота к этим сторонам в рассматриваемых треугольниках общая.
2
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. Углы, противолежащие равным сторонам, всегда острые (следует из их равенства). Признаки Два угла треугольника равны. Высота совпадает с медианой. Высота совпадает с биссектрисой. Биссектриса совпадает с медианой.
Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
1
Таким же образом, используя формулу для площади треугольника, можно доказать и теорему о биссектрисе внутреннего угла треугольника.
Теорема (о биссектрисе внутреннего угла треугольника).Если AA1 ¾ биссектриса угла A треугольника ABC, то
BA1 : A1 C = BA : AC.
Доказательство. Пусть угол при вершине A в треугольнике ABC равен 2a. Рассмотрим треугольники BAA1 и CAA1 (см. рис.). Их площади относятся как отрезки BA1 и A1C, поскольку высота к этим сторонам в рассматриваемых треугольниках общая.
2
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. Углы, противолежащие равным сторонам, всегда острые (следует из их равенства). Признаки Два угла треугольника равны. Высота совпадает с медианой. Высота совпадает с биссектрисой. Биссектриса совпадает с медианой.Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности.