В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
1 вариант: Радиус окружности равен половине отрезка СД СД =х-7 СД=25,4-7=18,4 1/2СД=18,4/2=9,2 см - это радиус окружности. Диаметр равен 9,2*2=18,4 см
2 вариант: Так как радиусом окружности является половина боковой стороны, то диаметр будет равен боковой стороне. По условию, боковая сторона = 25,4-7=18,4 см Возможно, попросят пояснить, почему радиус равен половине боковой стороны. Если провести радиус из центра О к точке касания К, он будет перпендикулярен касательной (свойство радиуса, проведенного к точке касания) - в получившемся маленьком прямоугольнике МДОК противоположные стороны равны
6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Объяснение:
1 вариант: Радиус окружности равен половине отрезка СД СД =х-7 СД=25,4-7=18,4 1/2СД=18,4/2=9,2 см - это радиус окружности. Диаметр равен 9,2*2=18,4 см
2 вариант: Так как радиусом окружности является половина боковой стороны, то диаметр будет равен боковой стороне. По условию, боковая сторона = 25,4-7=18,4 см Возможно, попросят пояснить, почему радиус равен половине боковой стороны. Если провести радиус из центра О к точке касания К, он будет перпендикулярен касательной (свойство радиуса, проведенного к точке касания) - в получившемся маленьком прямоугольнике МДОК противоположные стороны равны