ABCDA1B1C1D1 — паралелепіпед. Точки M i N - середини ребер В1С1 i D1C1 відповідно. Серед прямих, визначених точками малюнка:
а) вказати прямі, паралельні прямій MN;
б) встановити взаємне розміщення прямої АN відносно прямих
площини D1DC.
нужны просто рисунки
1) Треугольник у которого две стороны равны называется равносторонним. -
2) Если две стороны и угол одного треугольника равны двум сторонам и углу другого треугольника, то такие треугольники равны. +
3) Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны. +
4) Биссектриса угла треугольника это луч, который выходит из вершины этого угла и делит его пополам. +
5) Биссектрисы треугольника пересекаются в одной точке. +
6) Точка пересечения биссектрис остроугольного треугольника находится вне треугольника. -
7) В равнобедренном треугольнике углы при основании равны. +
8) В равностороннем треугольнике все углы равны. +
9) В равнобедренном треугольнике биссектриса угла является медианой и высотой. +
10) Если ∆АВС = ∆ КЕО, то АВ = КЕ, АС = КО, ВС = ОЕ. +
11) Если в ∆АВС ∠ А = 45°, ∠ С = 45°, то АС – основание треугольника. +
12) Медианы треугольника пересекаются в одной точке. +
13) Если ∆АВС = ∆КЕО, то ∠А = ∠К, ∠В = ∠О. -
14) Высоты треугольника или их продолжения пересекаются в одной точке. +
15) Сумма длин трех сторон треугольника называется его периметром. +
№ 1
1) AD - общая
2) уг.ADC=уг.ADB (по условию)
3) уг.CAD = уг.DAB (т.к. AD - биссектриса)
треугольники равны по стороне и двум прилежащим к ней углам
№ 2
проведем отрезок BD.
1) AB = DC (по условию)
2) AD = CD (по условию)
3) BD - общая ( по построению)
Треугольники равны по трем сторонам. А в равных треугольниках соответственные углы равны, значит, уг.А =уг.С
№ 3
Треугольники равны по трем сторонам, т.к.
1) основания равны
2) одна боковая сторона равны
3) значит и другие боковые стороны равны, т.к. треугольники равнобедреннные