Обозначим пирамиду МАВС.
Боковые ребра пирамиды наклонены под одинаковым (45°) углом к плоскости основания.
Значит, их проекции равны радиусу описанной окружности правильного треугольника, а вершина пирамиды проецируется в центр О ее основания.
Боковые ребра с высотой пирамиды образуют равнобедренный прямоугольный треугольник .
В ∆ МАО угол МАО= 45° (по условию). Поэтому высота МО пирамиды равна радиусу АО описанной окружности.
Радиус описанной окружности находят по формуле R=а/√3
R=АО=12:√3=12√3:3=4√3
МО=АО=4√3
Предположим, что прямая а не пересекает плоскости α и β.
Значит, прямая а параллельна обеим плоскостям.
Тогда в каждой плоскости найдется прямая, параллельная прямой а. Пусть это прямые b и с.
Так как b║a и с║а, то b║c.
Если прямая с параллельна прямой b, лежащей в плоскости α, то с║α.
Плоскость β проходит через прямую с, параллельную плоскости α, и пересекает плоскость α, значит линия пересечения плоскостей параллельна прямой с.
Итак, c║l, c║a, ⇒ l║a. Но прямые l и а скрещивающиеся. Получили противоречие.
Значит, прямая а пересекает хотя бы одну из плоскостей.
Обозначим пирамиду МАВС.
Боковые ребра пирамиды наклонены под одинаковым (45°) углом к плоскости основания.
Значит, их проекции равны радиусу описанной окружности правильного треугольника, а вершина пирамиды проецируется в центр О ее основания.
Боковые ребра с высотой пирамиды образуют равнобедренный прямоугольный треугольник .
В ∆ МАО угол МАО= 45° (по условию). Поэтому высота МО пирамиды равна радиусу АО описанной окружности.
Радиус описанной окружности находят по формуле R=а/√3
R=АО=12:√3=12√3:3=4√3
МО=АО=4√3
Предположим, что прямая а не пересекает плоскости α и β.
Значит, прямая а параллельна обеим плоскостям.
Тогда в каждой плоскости найдется прямая, параллельная прямой а. Пусть это прямые b и с.
Так как b║a и с║а, то b║c.
Если прямая с параллельна прямой b, лежащей в плоскости α, то с║α.
Плоскость β проходит через прямую с, параллельную плоскости α, и пересекает плоскость α, значит линия пересечения плоскостей параллельна прямой с.
Итак, c║l, c║a, ⇒ l║a. Но прямые l и а скрещивающиеся. Получили противоречие.
Значит, прямая а пересекает хотя бы одну из плоскостей.