усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60
∠В=90-2в(сумма острых углов прям тр-ка АВС равна 90
По теореме синусов (для тр-каАДВ)
АВ/sin(∠ADB)=AD/sinB
a/sin(90+b)=(a/√3)/sin(90-2b)
a/cosb=a/(√3 cos2b); b-бэтта
√3acos2b=acosb :a
√3cos2b=cosb
√3(2cos^2 b-1)-cosb=0
2√3cos^2 b-cosb-√3=0
cosb=x; 2√3x^2-x-√3=0
D=1+8*(√3)^2=1+24=25=5^2;x=(1+-5)/(4√3)
x=6/4 )/√3=(3√3)/(2*√3*√3)=√3/2
x=-4/(4√3)=-1/√3-посторонний, угол острый и cosb>0
cosb=√3/2; b=30grad
тогда ∠А=2*30=60град; ∠В=90-60=30град
Катет АС против угла в 30 градусов, АС=1/2АВ; АС=а/2
BC^2=a^2-(a/2)^2(по теореме Пифагора из тр. АВС)
ВС=√(a^2-a^2/4)=a√3/2
ответ а/2; а√3/2