Обозначим основание пирамиды как квадрат АВСД, центр пересечения диагоналей квадрата - т.О, вершина пирамиды - т.К, высота пирамиды - отрезок КО, высота из т.О на сторону АВ основания - отрезок ОМ.
Тогда угол, который образует боковая грань с плоскостью основания будет равен ∠КМО в прямоугольном ΔКМО с катетами ОМ и КО.
Катет КО = 11 см по условию задачи,
катет ОМ равен радиусу вписанной в квадрат основания окружности, поэтому равен половине стороны основания, т.е.
ОМ=22/2=11 см.
Т.к. оба катета равны, то получаем прямоугольный равнобедренный треугольник, с углами при гипотенузе ∠КМО=∠МКО=45°
45°
Объяснение:
Обозначим основание пирамиды как квадрат АВСД, центр пересечения диагоналей квадрата - т.О, вершина пирамиды - т.К, высота пирамиды - отрезок КО, высота из т.О на сторону АВ основания - отрезок ОМ.
Тогда угол, который образует боковая грань с плоскостью основания будет равен ∠КМО в прямоугольном ΔКМО с катетами ОМ и КО.
Катет КО = 11 см по условию задачи,
катет ОМ равен радиусу вписанной в квадрат основания окружности, поэтому равен половине стороны основания, т.е.
ОМ=22/2=11 см.
Т.к. оба катета равны, то получаем прямоугольный равнобедренный треугольник, с углами при гипотенузе ∠КМО=∠МКО=45°
1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение: