Равноудаленная от катетов точка на гипотенузе делит её на отрезки длиной 30 см и 40 см. Найдите катеты треугольника. ---- Обозначим треугольник АВС, С=90°, точку на гипотенузе К. Так как точка равноудалена от катетов, расстояние от неё до них равно длине равных отрезков, проведенных к катетам перпендикуляров: КМ до ВС, КН до АС.
Все углы четырехугольника МКНС, вписанного в прямоугольный треугольник АВС – прямые, две стороны равны по условию, две другие им параллельны и противолежат, поэтому он – квадрат.
Его диагональ СМ для прямого угла С является биссектрисой.
Биссектриса угла треугольника делит противолежащую этому угла сторону на отрезки, пропорциональные прилежащим сторонам. ⇒
ВС:АС=ВК:АК.
Обозначим АС=х, ВС=у. ⇒
у:х=30:40 ⇒ у:х=3:4 ⇒
у=3х/4
АВ=30+40=7•10
По т.Пифагора
АВ²=АС²+ВС²=х²+у² Заменим у на его значение, выраженное через х:
----
Обозначим треугольник АВС, С=90°, точку на гипотенузе К. Так как точка равноудалена от катетов, расстояние от неё до них равно длине равных отрезков, проведенных к катетам перпендикуляров: КМ до ВС, КН до АС.
Все углы четырехугольника МКНС, вписанного в прямоугольный треугольник АВС – прямые, две стороны равны по условию, две другие им параллельны и противолежат, поэтому он – квадрат.
Его диагональ СМ для прямого угла С является биссектрисой.
Биссектриса угла треугольника делит противолежащую этому угла сторону на отрезки, пропорциональные прилежащим сторонам. ⇒
ВС:АС=ВК:АК.
Обозначим АС=х, ВС=у. ⇒
у:х=30:40 ⇒ у:х=3:4 ⇒
у=3х/4
АВ=30+40=7•10
По т.Пифагора
АВ²=АС²+ВС²=х²+у² Заменим у на его значение, выраженное через х:
7²•10²=х²+ 9х²/16
7²•10²=25x²/16
25x²=49•100•16
x²=49•4•16 ⇒x=7•2•4=56 см – длина АС
ВС=3•56/4=42 см
пусть точки А1 и А2 принадлежат прямой а
точки В1 и В2 принадлежат прямой б
с пересекает а в точке О1
с пересекает б в точке О2
а параллельна б
угол А1О1С=20 градусов
угол А1О1А2 развернутый и равен 180, тогда угол А2О1С смежный с углом А1О1С и равен 180-20=160
А1О1С и О2О1А2 вертикальные, значит они равные и равны 20
А2О1О2 и В1О2О1 внутренние накрест лежащие и тоже равны между собой по 20
В1О2О1 и В2О2С вертикальные и равны 20
А2О1С и О2О1А1 вертикальные и равные, равны по 160
А1О1О2 и В1О2О1 внутренние накрест лежащие, поэтому равные и равны по 160
В2О2О1 и В1О2С вертикальные, равны по 160