Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Объяснение:
12)
СО=1/2*АВ=1/2*18=9 см радиус
<СОВ=2*<САВ=2*20°=40° центральный угол.
Sсегм=1/2*СО²(π*40°/180°-sin<COB)=
=1/2*9²*(2π/9-sin40°)=1/2*81*(2π/9-0,6427)=
=40,5(2π/9-0,6427)=81π/9-26,02935=
=9*3,14-26,02935=28,26-26,02935≈
≈2,23 см²
ответ: 2,23см²
13)
R=1/2*AB=1/2*4=2 ед радиус полукруга
Sп.кр.=1/2*πR²=1/2*π*2²=2π ед²
r=1/2*R=1/2*2=1 ед радиус меньшей окружности.
Sм.кр.=πr²=π*1²=π ед²
Sз.ф.=Sп.кр.-Sм.кр.=2π-π=π ед²
ответ: площадь заданной фигуры равно π ед²
Обозначения:
Sп.кр- площадь полукруга
Sм.кр.- площадь меньшего круга
Sз.ф.- площадь заданной фигуры
14)
S(ABCDEF)=6*AB²√3/4=6*6²√3/4=54√3≈
≈93,53eд²
Радиус равен стороне шестиугольника
R=6ед.
Sч.кр=4/6*πR²=4/6*6²*3,14=24*3,14≈
≈75,36 ед²
Sз.ф.=S(ABCDEF)-Sч.кр.=93,53-75,36=
=18,2 ед²
ответ: 18,2 ед²
Обозначения
Sч.кр.- площадь части круга.
Sз.ф.- площадь заданной фигуры
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².