Смотри, площадь треугольника равна S=r*P/2, где P-периметр , а r-радиус вписанной окружности. P=ab+(ac+bc)=72, тогда S=240, так же площадь равна корню из(p/2*(p-ab)(p-bc)(p-ac), это формула герона, так как ac + bc =46, а ab = 26, то подставим всё сюда и будет выглядеть так:
240^2=36*(36-26)(36-46+bc)(36-bc) "ac = 46-bc" по условию. после решаем это, раскрыв всё, будет выглядеть так:
bc^2 - 46bc + 520 = 0, где дискриминант равен 36, получим bc = 26 или 20, просто второе значение это ac, ведь 26 + 20 = 46, а это ac+bc, ответ: 20 и 26
Центр координат поместим в точку А , ось X в сторону точки F , ось Y в сторону точки С , ось Z в сторону точки А1. тогда координаты интересующих нас точек будут : А(0;0;0) А1(0;0;1) С(0;√3;0) В1(-0.5;√3/2;1) уравнение плоскости А1В1С ax+by+cz+d=0 подставим в него координаты точек А1 С и В1
с+d=0 √3b+d=0 -0.5a+√3/2b+c+d=0
положим d=1, тогда с=-1 b=-1/√3 a=-1/√3 нормализованное уравнение плоскости . к= √(1/3+1/3+1)=√(5/3) -1/√5x-1/√5y-√(3/5)z+√(3/5)=0 подставим координаты точки А(0;0;0) в нормализованное уравнение l =| √(3/5) |= √(3/5) - это искомое расстояние до плоскости.
240^2=36*(36-26)(36-46+bc)(36-bc) "ac = 46-bc" по условию. после решаем это, раскрыв всё, будет выглядеть так:
bc^2 - 46bc + 520 = 0, где дискриминант равен 36, получим bc = 26 или 20, просто второе значение это ac, ведь 26 + 20 = 46, а это ac+bc, ответ: 20 и 26
тогда координаты интересующих нас точек будут :
А(0;0;0)
А1(0;0;1)
С(0;√3;0)
В1(-0.5;√3/2;1)
уравнение плоскости А1В1С
ax+by+cz+d=0
подставим в него координаты точек А1 С и В1
с+d=0
√3b+d=0
-0.5a+√3/2b+c+d=0
положим d=1, тогда с=-1 b=-1/√3 a=-1/√3
нормализованное уравнение плоскости .
к= √(1/3+1/3+1)=√(5/3)
-1/√5x-1/√5y-√(3/5)z+√(3/5)=0
подставим координаты точки А(0;0;0) в нормализованное уравнение
l =| √(3/5) |= √(3/5) - это искомое расстояние до плоскости.