Қабырғалары 1-ге тең және диагональдары О нүктесінде қиылысатын ABCDEF дұрыс алтыбұрышы берілген.а)DE вектор; ә)OF вектор; б)BE вектор; в)FC векторларын табыңдар.
Рассмотрим линейную функцию y = 3 ∙ x, определенную на числовом отрезке [−2; 3]. Эта функция является прямой пропорциональностью с угловым коэффициентом k = 3, графиком которой является прямая линия, проходящая через начало координат. Так как k < 0, то функция y = − 3 ∙ x является убывающей, то есть большему значению аргумента соответствует меньшее значение функции:
х = 3 – наибольшее значение аргумента на числовом отрезке [−2; 3];
y = 3 ∙ 3 = 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3; 3].
ответ: 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3
Объяснение:
Рассмотрим линейную функцию y = 3 ∙ x, определенную на числовом отрезке [−2; 3]. Эта функция является прямой пропорциональностью с угловым коэффициентом k = 3, графиком которой является прямая линия, проходящая через начало координат. Так как k < 0, то функция y = − 3 ∙ x является убывающей, то есть большему значению аргумента соответствует меньшее значение функции:
х = 3 – наибольшее значение аргумента на числовом отрезке [−2; 3];
y = 3 ∙ 3 = 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3; 3].
ответ: 9 − наименьшее значение линейной функции y = 3 ∙ x на отрезке [−3
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см