Если <D=<B=120°, то <A=<C=180-120=60° Рассмотрим прямоуг. треугольник AMB. В нем <ABM=180-(60+90)=30° Значит, сторона AM лежит против угла в 30° и она в 2 раза меньше гипотенузы AB, т.е. АМ=4:2=2 см. Тогда MD=AD-AM=4-2=2 см Аналогично, в прямоуг. треугольнике BNC <CBN=180-(60+90)=30° Следовательно, <MBN=<ABC-(<ABM+<CBN)=120-(30+30)=60°
Рассмотрим треугольник ABD. Он - равнобедренный (AD=AB), значит, <ADB=<ABD. Но <A = 60°, тогда <ADB=<ABD.= (180-<A)/2=(180-60)/2=60°, т.е. треугольник ABD - равносторонний, тогда BD=AB=4 см
Рассмотрим треугольник MBN. Т.к. Δ AMB=ΔCNB (по 1-му признаку, AB=BC, AM=CN, <A=>C), то BM=BN и ΔMBN - равнобедренный. Но <MBN=60°, значит, <BMN=<BNM=(180-60)/2=60°А это означает, что ΔMBN - равносторонний все доказали
Параллелепипед АВСДА1В1С1Д1, АД=8, АС1=16, уголС1АД=45, треугольник АД1С1 прямоугольный равнобедренный, уголД1С1А=90-уголС1АД=90-45=45, АД1=Д1С1=ДС=х, АС1 в квадрате=АД в квадрате+ДС вквадрате+СС1 в квадрате, СС1=ДД1, ДД1 в квадрате=АД1 в квадрате-АД в квадрате=АД1 в квадрате-64=х в квадрате-64, 256=64+х в квадрате+(х в квадрате-64), 256=х в квадрате, х=8*корень2=АД1=ДС=Д1С1, треугольник АДД1 прямоугольный, ДД1=корень(АД1 в квадрате-АД в квадрате)=корень(128-64)=8=СС1, объем=АД*ДС*СС1=8*8*корень2*8=512*корень2
Если <D=<B=120°, то <A=<C=180-120=60°
Рассмотрим прямоуг. треугольник AMB. В нем <ABM=180-(60+90)=30°
Значит, сторона AM лежит против угла в 30° и она в 2 раза меньше гипотенузы AB, т.е.
АМ=4:2=2 см. Тогда
MD=AD-AM=4-2=2 см
Аналогично, в прямоуг. треугольнике BNC <CBN=180-(60+90)=30°
Следовательно, <MBN=<ABC-(<ABM+<CBN)=120-(30+30)=60°
Рассмотрим треугольник ABD. Он - равнобедренный (AD=AB), значит, <ADB=<ABD.
Но <A = 60°, тогда <ADB=<ABD.= (180-<A)/2=(180-60)/2=60°, т.е. треугольник ABD - равносторонний, тогда
BD=AB=4 см
Рассмотрим треугольник MBN.
Т.к. Δ AMB=ΔCNB (по 1-му признаку, AB=BC, AM=CN, <A=>C), то BM=BN и
ΔMBN - равнобедренный. Но <MBN=60°, значит,
<BMN=<BNM=(180-60)/2=60°А это означает, что ΔMBN - равносторонний
все доказали