Чтобы выучить зачёт,естественно нужно открыть учебник,там будут правила,выписать их(чтобы было легче),либо теоремы,формулы,смотря какой зачёт.А ещё смотря на какую тему,может вам дали весь учебник какого-то класс?Это будет намного сложнее,ведь в 8 и тем более в 9 давольно много правил,разных тем.Ну а чтобы вызубрить,естественно нужно потратить часа 2,все зависит от человека,не ленится и выучить все,что было задано.Не знаю зачем ты задал такой аопрос,больше чем уверена,что ты знал ответ,ведь магическим образом выучить ты не сможешь,таких методов нет,действуй,желаю удачи ))
Только что решал эту же задачу прощения, без чертежа, нет такой возможности, но прямоугольный треугольник, надеюсь, начертить легко./ Узловые моменты объясняю.
Она на применение теоремы Пифагора. Здесь наклонная MN- гипотенуза, проекция наклонной на плоскость α, равная 8см, это катет. А расстояние до плоскости, подлежащее определению, это другой катет прямоугольного треугольника. Треугольник египетский. Два катета 6см и 8 см, значит, гипотенуза 10 см
ответ 10 см
2.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
1.
Только что решал эту же задачу прощения, без чертежа, нет такой возможности, но прямоугольный треугольник, надеюсь, начертить легко./ Узловые моменты объясняю.
Она на применение теоремы Пифагора. Здесь наклонная MN- гипотенуза, проекция наклонной на плоскость α, равная 8см, это катет. А расстояние до плоскости, подлежащее определению, это другой катет прямоугольного треугольника. Треугольник египетский. Два катета 6см и 8 см, значит, гипотенуза 10 см
ответ 10 см
2.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.