Что-то не так. Во-первых, опечатка - не призма, а пирамида. Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды. Значит, считаем, что это 4-угольная правильная пирамида. В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней). Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным. Нижние вершины куба лежат на средних линиях основания KM и LN. Справа я нарисовал сечение пирамиды плоскостью SLN. В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба, а основание PR = P1R1 = x√2 - диагонали грани куба. Теперь решаем задачу. Сторона основания пирамиды а, диагональ AC = BD = a√2, OC = a√2/2, угол наклона бокового ребра α. В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α. В треугольнике LOS катет OL = a/2, по теореме Пифагора SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α) SL = a/2*√(1 + 2tg α) Угол наклона апофемы к плоскости основания OLS = β: tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α В треугольнике RR1L катет RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α) Но мы знаем, что PR = x√2 и NP = RL. Получаем NL = NP + PR + RL a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова2+2=4
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова соваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова словасоваслова слова словаслова слова слова лова слова слова слова слова словаслова слова слова слова слова словаслова слова слова2+2=4