Расстояние от точки до плоскости равно длине перпендикулярного к ней отрезка.
Обозначим вершины ромба АВСD.
Точка L удалена от прямых, содержащих стороны ромба, на одинаковое расстояние. ⇒ наклонные, проведенные из L перпендикулярно к сторонам ромба, равны, и по т. о з-х перпендикулярах равны их проекции.
Эти проекции равны половине диаметра вписанной в ромб окружности, который равен высоте ВН ромба. Центр окружности лежит на пересечении диагоналей ромба.
ВН=АВ•sin 45°=(a√2)/2=a/√2.
Радиус ОK=а/2√2.
По т.Пифагора из ∆ LOK катет LO=√(LK²-OK²)
LO=√(b²- a²/8) Домножив в подкоренном выражении числитель и знаменатель на 2, получим LO=√[2•(8b²-a²):16]=[√2•(8b²-a²)]:4
1) Находим радиус вписанной окружности, а для этого по формуле Герона находим площадь: S = √(p(p-a)(p-b)(p-c)). р = (6+7+5)/2 = 9 S = √(9(9-6)(9-7)(9-5)) = √216 = 14.69693846 r = S / p = 14.69693846 / 9 = 1.63299316. Так как треугольники подобны, то площади пропорциональны квадрату коэффициента пропорциональности. Найдем высоту треугольника АВС: Hb= 2S / b = 2*14.69693846 / 7 = 4.1991253. Высота треугольника ВКМ меньше на 2 радиуса: hb = Hb - 2r = 4.1991253 - 2*1.63299316 = 0.93313895 Коэффициент пропорциональности к = hb / Hb = 0.9331389 / 4.1991253 = 0.22222222, к² = 0.04938272. Тогда S(BKM) = 14.69693846* 0.04938272 = 0.725774739 кв.ед. А периметр равен Р(АВС)*к = (6+7+5)*0.22222222 = = 18*0.22222222 = 4. 2) В этой задаче не улавливается зависимость между заданными площадями треугольников. 3) В этой задаче что то неверно в условии. Если диаметр , проходящий через вершину В, делит хорду KL пополам, то эта хорда перпендикулярна диаметру. При этом она не пересекает сторону ВС - смотри прилагаемый чертёж.
Расстояние от точки до плоскости равно длине перпендикулярного к ней отрезка.
Обозначим вершины ромба АВСD.
Точка L удалена от прямых, содержащих стороны ромба, на одинаковое расстояние. ⇒ наклонные, проведенные из L перпендикулярно к сторонам ромба, равны, и по т. о з-х перпендикулярах равны их проекции.
Эти проекции равны половине диаметра вписанной в ромб окружности, который равен высоте ВН ромба. Центр окружности лежит на пересечении диагоналей ромба.
ВН=АВ•sin 45°=(a√2)/2=a/√2.
Радиус ОK=а/2√2.
По т.Пифагора из ∆ LOK катет LO=√(LK²-OK²)
LO=√(b²- a²/8) Домножив в подкоренном выражении числитель и знаменатель на 2, получим LO=√[2•(8b²-a²):16]=[√2•(8b²-a²)]:4
р = (6+7+5)/2 = 9
S = √(9(9-6)(9-7)(9-5)) = √216 = 14.69693846
r = S / p = 14.69693846 / 9 = 1.63299316.
Так как треугольники подобны, то площади пропорциональны квадрату коэффициента пропорциональности.
Найдем высоту треугольника АВС:
Hb= 2S / b = 2*14.69693846 / 7 = 4.1991253.
Высота треугольника ВКМ меньше на 2 радиуса:
hb = Hb - 2r = 4.1991253 - 2*1.63299316 = 0.93313895
Коэффициент пропорциональности к = hb / Hb = 0.9331389 / 4.1991253 = 0.22222222,
к² = 0.04938272.
Тогда S(BKM) = 14.69693846* 0.04938272 = 0.725774739 кв.ед.
А периметр равен Р(АВС)*к = (6+7+5)*0.22222222 =
= 18*0.22222222 = 4.
2) В этой задаче не улавливается зависимость между заданными площадями треугольников.
3) В этой задаче что то неверно в условии.
Если диаметр , проходящий через вершину В, делит хорду KL пополам, то эта хорда перпендикулярна диаметру. При этом она не пересекает сторону ВС - смотри прилагаемый чертёж.