1)В параллелаграмме биссектриса одного из его углов отсекает от него равнобедренный треугольник, т. е. АВ=ВР=4см, а АВ=СД=4см - по свойству параллелаграмма. Ну или ∠РАД=∠ВРА- по свойству накрест лежащих углов по свойству параллельных прямых ВС и Ад, секущей АР, ∠РАД=∠ВАД - по свойству биссектрисы АР следовательно ∠ВРА=∠ВАД, а из этого следует, что ∡АВР-равнобедренный по признаку углов равнобедренного треугольника, следовательно ВА=ВР. 2)ВС=ВР+РС=14см, ВС=ДА=14 см - по свойству параллелаграмма. 3) Р АВСД=2(4+14)=36см.
На фото изображена часть данной пирамиды: ОР-высота пирамиды, АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°. ∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них. ΔРОК. ОР=ОК=2 ОК⊥АВ. ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08. SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08. Площадь основания состоит из 12-ти таких треугольников. Площадь основания пирамиды равна S=1,08·12=12,96. Объем пирамиды равен V=12.96·2/3=8,64 ответ : 8,64 куб. ед.
а АВ=СД=4см - по свойству параллелаграмма.
Ну или ∠РАД=∠ВРА- по свойству накрест лежащих углов по свойству параллельных прямых ВС и Ад, секущей АР,
∠РАД=∠ВАД - по свойству биссектрисы АР
следовательно ∠ВРА=∠ВАД,
а из этого следует, что ∡АВР-равнобедренный по признаку углов равнобедренного треугольника,
следовательно ВА=ВР.
2)ВС=ВР+РС=14см,
ВС=ДА=14 см - по свойству параллелаграмма.
3) Р АВСД=2(4+14)=36см.
АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°.
∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них.
ΔРОК. ОР=ОК=2
ОК⊥АВ.
ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08.
SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08.
Площадь основания состоит из 12-ти таких треугольников.
Площадь основания пирамиды равна S=1,08·12=12,96.
Объем пирамиды равен V=12.96·2/3=8,64
ответ : 8,64 куб. ед.