1) Произведением вектора a→ на число k ( k ≠0) называется вектор b→, модуль которого равен ∣∣∣b→∣∣∣=∣∣k∣∣⋅∣∣a→∣∣, при этом: - векторы a→ и b→ сонаправлены, если >0; - векторы a→ и b→ противоположно направлены, если <0. 2) Если вектор b равен произведению ненулевого числа k и ненулевого вектора a, то есть b = k · a, тогда:
b || a - вектора b и a параллельны a↑↑b, если k > 0 - вектора b и a сонаправленные, если число k > 0 a↑↓b, если k < 0 - вектора b и a противоположно направленные, если число k < 0 |b| = |k| · |a| - модуль вектора b равен модулю вектора a умноженному на модуль числа k
По условию МК=КР, => ЕМ=ЕР(равные наклонные имеют равные проекции). ΔМЕР-равнобедренный. расстояние от точки Е до прямой МР-это перпендикуляр, проведенный из вершины равнобедренного треугольника к основанию является медианой(7 класс). (точку пересечения перпендикуляра и стороны МР обозначим буквой Д). рассмотрим ΔЕКД: 1. <ЕКД=90, т.к по условию ЕК перпендикулярна плоскости ΔМКР(прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости) 2. ЕК=8см 3. ЕД=2√41 4. по теореме Пифагора: ЕД^2=ЕК^2+КД^2, (2√41)^2=8^2+КД^2, 4*41=64+КД^2 КД^2=164-64, КД^2=100, рассмотрим ΔМДК: 1. <МДК=90 2. МД=1/2МР, МД=(1/2)*2√21, МД=√21 3. КД=10 4. по теореме Пифагора: МК^2=МД^2+КД^2, МК^2=21+100, ответ: МК=11
Произведением вектора a→ на число k ( k ≠0) называется вектор b→, модуль которого равен ∣∣∣b→∣∣∣=∣∣k∣∣⋅∣∣a→∣∣, при этом:
- векторы a→ и b→ сонаправлены, если >0;
- векторы a→ и b→ противоположно направлены, если <0.
2) Если вектор b равен произведению ненулевого числа k и ненулевого вектора a, то есть b = k · a, тогда:
b || a - вектора b и a параллельны
a↑↑b, если k > 0 - вектора b и a сонаправленные, если число k > 0
a↑↓b, если k < 0 - вектора b и a противоположно направленные, если число k < 0
|b| = |k| · |a| - модуль вектора b равен модулю вектора a умноженному на модуль числа k
рассмотрим ΔЕКД:
1. <ЕКД=90, т.к по условию ЕК перпендикулярна плоскости ΔМКР(прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости)
2. ЕК=8см
3. ЕД=2√41
4. по теореме Пифагора: ЕД^2=ЕК^2+КД^2, (2√41)^2=8^2+КД^2, 4*41=64+КД^2
КД^2=164-64, КД^2=100,
рассмотрим ΔМДК:
1. <МДК=90
2. МД=1/2МР, МД=(1/2)*2√21, МД=√21
3. КД=10
4. по теореме Пифагора: МК^2=МД^2+КД^2, МК^2=21+100,
ответ: МК=11