Прямая, проходящая через середины отрезков МА и МВ - это средняя линия треугольника АМВ, параллельная его основанию АВ. Следовательно, эта прямая и прямая АС - скрещивающиеся прямые, так как по определению: две прямые в трехмерном пространстве называются скрещивающимися, если они не лежат в одной плоскости. Угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым. Значит искомый угол - это угол между пересекающимися прямыми АВ и АС. Но угол ВАС=45°, так как АВСD - квадрат, а АС - его диагональ. ответ: искомый угол равен 45°.
ответ: искомый угол равен 45°.
основание квадрат - пусть сторона =b
тогда диагональ основания d =b√2
боковые ребра наклонены к плоскости основания под углом 60 градусов.
Значит диагональное сечение пирамиды равносторонний треугольник
тогда боковое ребро c=d =b√2
тогда апофема боковой грани
A^2= c^2 - (b/2)^2=(b√2)^2 - (b/2)^2 =b^2 (2-1/4)=b^2*7/4
A =b*√(7/4) = b/2*√7
тогда КОСИНУС линейного угла двугранного угла при основании
cos<a = (b/2)/A = (b/2)/(b/2*√7) = (b/2)/(b/2*√7) = 1/√7
<a = arccos 1/√7 (или 67.79 град )