1. всі чотири сторони квадрата мають однакову довжину, тобто вони рівні: ab = bc = cd = ad 2. протилежні сторони квадрата паралельні: ab||cd, bc||ad 3. всі чотири кути квадрата прямі: ∠abc = ∠bcd = ∠cda = ∠dab = 90° 4. сума кутів квадрата дорівнює 360 градусів: ∠abc + ∠bcd + ∠cda + ∠dab = 360° 5. діагоналі квадрата мають однакової довжини: ac = bd 6. кожна діагональ квадрата ділить квадрат на дві однакові симетричні фігури 7. діагоналі квадрата перетинаються під прямим кутом, і розділяють одна одну навпіл: ac┴bd ao = bo = co = do = d 2 8. точка перетину діагоналей називається центром квадрату і також є центром вписаного та описаного кола 9. кожна діагональ ділить кут квадрату навпіл, тобто вони є бісектрисами кутів квадрату: δabc = δadc = δbad = δbcd ∠acb = ∠acd = ∠bdc = ∠bda = ∠cab = ∠cad = ∠dbc = ∠dba = 45° 10. обидві діагоналі розділяють квадрат на чотири рівні трикутника, до того ж ці трикутники одночасно і рівнобедрені, і прямокутні: δaob = δboc = δcod = δdoa
Вектор АМ = (4-(-4); 2-4) = (8; -2).
Уравнение высоты АМ:
х + 4)/8 = (у - 4)/(-2), или в общем виде х + 4у - 12 = 0.
Сторона треугольника АС перпендикулярна этой высоте.
Коэффициенты в уравнении ВС меняются так: -В и А, то есть -4 и 1.
Уравнение АВС: -4х + у + С = 0.
Для определения слагаемого С подставим координаты точки В:
-4*(-4) + (-12) + С = 0, отсюда С = 16 + 12 = 28.
Уравнение ВС: -4х + у + 28 = 0 или 4х - у - 28 = 0.
Так как сторона АС перпендикулярна высоте ВМ, у которой координаты точек по оси Ох совпадают, то АС - горизонтальная линия.
А так как она проходит через точку с ординатой у = 4, то это и есть уравнение стороны АС: у = 4.
Подставим у = 4 в уравнение ВС и найдём координату точки пересечения прямых, это точка С.
4х - 4 - 28 = 0, отсюда х = 32/4 = 8.
ответ: координаты точки С(8; 4).