Проведём осевое сечение заданной пирамиды перпендикулярно ребру основания. В сечении имеем равнобедренный треугольник ESK. Боковые стороны - это высоты h, основание ЕК равно высоте ромба в основании, высота равна высоте Н пирамиды. Сторона а основания равна: a = EK/sin α = 2h*cos β/sin α. Высота SO = Н пирамиды равна: Н = h*sin β. Площадь основания равна: So = a*EK = ( 2h*cos β/sin α)*( 2h*cos β) = 4h²*cos² β/sin α. Теперь находим искомый объём V пирамиды: V = (1/3)So*H = (1/3)*(4h²*cos² β/sin α)*(h*sin β) = (4/3)h³*cos² β*sin β/sin α.
Решение: Воспользуемся признаком параллельности прямой и плоскости. В теореме утверждается, что если прямая, не лежащая в плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то прямая будет параллельна и самой плоскости. Прямая AB по условию не лежит в плоскости PCD. В плоскости PCD лежит прямая СD, параллельная прямой AB. Действительно, по условию ABCD - параллелограмм, а по определению его противолежащие стороны AB и CD параллельны. Получили, что AB ║CD, CD⊂ (PCD) , тогда по признаку AB ║ (PCD), что и требовалось доказать.
В сечении имеем равнобедренный треугольник ESK. Боковые стороны - это высоты h, основание ЕК равно высоте ромба в основании, высота равна высоте Н пирамиды.
Сторона а основания равна:
a = EK/sin α = 2h*cos β/sin α.
Высота SO = Н пирамиды равна: Н = h*sin β.
Площадь основания равна:
So = a*EK = ( 2h*cos β/sin α)*( 2h*cos β) = 4h²*cos² β/sin α.
Теперь находим искомый объём V пирамиды:
V = (1/3)So*H = (1/3)*(4h²*cos² β/sin α)*(h*sin β) = (4/3)h³*cos² β*sin β/sin α.
Воспользуемся признаком параллельности прямой и плоскости. В теореме утверждается, что если прямая, не лежащая в плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то прямая будет параллельна и самой плоскости.
Прямая AB по условию не лежит в плоскости PCD. В плоскости PCD лежит прямая СD, параллельная прямой AB. Действительно, по условию ABCD - параллелограмм, а по определению его противолежащие стороны AB и CD параллельны.
Получили, что
AB ║CD, CD⊂ (PCD) , тогда по признаку AB ║ (PCD), что и требовалось доказать.