\\ в конце есть вложение с изображением пирамиды \\
Дана пирамида ABCDE с прямогольным основанием, стороны основания AB =25 мм и BC = 40 мм, высота пирамиды h=30 мм.
Необходимо найти площать боковой поверхности и площадь полной поверхности, которая равна площадь боковой + площать основания.
Площадь основания S_ABCD = AB * BC = 25 * 40 = 1000 мм
S_бок.пов. = S_ABE + S_CDE + S_ADE + S_BCE = 2*S_ABE + 2*S_BCE (так как противолежащие боковые грани равны)
S_ABE = 1/2 A'E * AB, A' делит AB пополам и является высотой треугольника ABE.
Найдем A'E из прямоугольного треугольника А'ЕO (где О - точка пересечения высоты призмы и её основания), опирающегося на высоту пирамиды и A'E, по теореме Пифагора. A'O - параллельно CB и равно его половине.
S_BCE = 1/2 B'E * BC, B' делит BC пополам и является высотой треугольника BCE.
Найдем B'E из прямоугольного треугольника B'EO(где О - точка пересечения высоты призмы и её основания) , опирающегося на высоту пирамиды и B'E, по теореме Пифагора. B'O параллельно AB и равно его половине.
\\ в конце есть вложение с изображением пирамиды \\
Дана пирамида ABCDE с прямогольным основанием, стороны основания AB =25 мм и BC = 40 мм, высота пирамиды h=30 мм.
Необходимо найти площать боковой поверхности и площадь полной поверхности, которая равна площадь боковой + площать основания.
Площадь основания S_ABCD = AB * BC = 25 * 40 = 1000 мм
S_бок.пов. = S_ABE + S_CDE + S_ADE + S_BCE = 2*S_ABE + 2*S_BCE (так как противолежащие боковые грани равны)
S_ABE = 1/2 A'E * AB, A' делит AB пополам и является высотой треугольника ABE.
Найдем A'E из прямоугольного треугольника А'ЕO (где О - точка пересечения высоты призмы и её основания), опирающегося на высоту пирамиды и A'E, по теореме Пифагора. A'O - параллельно CB и равно его половине.
A'E = V(h^2 + (BC/2)^2) (V - тут вместо корня)
A'E = V(900 + 400) = V(1300) = 10*V13 mm
S_ABE = 1/2 A'E * AB = 1/2 * 10V13 * 25 = 5V13 *25 = 125V13
S_BCE = 1/2 B'E * BC, B' делит BC пополам и является высотой треугольника BCE.
Найдем B'E из прямоугольного треугольника B'EO(где О - точка пересечения высоты призмы и её основания) , опирающегося на высоту пирамиды и B'E, по теореме Пифагора. B'O параллельно AB и равно его половине.
B'E = V(h^2 + (AB/2)^2)
B'E = V(900 + 156,25) = V(1056,25) = 32,5 мм
S_BCE = 1/2 B'E * BC = 1/2 * 32,5 * 40 = 29 * 32,5 = 942,5 мм^2
S_бок.пов. = 2*S_ABE + 2*S_BCE = 2*125V13 + 2*942,5 = 250V13 + 1885 мм^2
S_полн. = S_ABCD + S_бок.пов. =1000 + 250V13 + 1885 = 2885 + 250V13 мм^2
(0; 1) и (-1; 0)
Объяснение:
x² - 2xy + 2x - y + 1 = 0
Преобразуем уравнение
(х² + 2х + 1) - у(2х + 1) = 0
(х + 1)² - у(2х + 1) = 0
у = (х + 1)² : (2х + 1)
или
у = 1 + х²/(2х + 1)
По условию отношение х²/(2х + 1) = k ( k - целое число)
х² = 2кх + k
х² - 2кх - k = 0
Единственное решение имеет место, если дискриминант равен нулю
D = 4k² + 4k = 0
k = 0 и k = - 1
Итак, мы получили
х²/(2х + 1) = 0 ⇒ х = 0 ⇒ у = 1 + х²/(2х + 1) = 1
х²/(2х + 1) = -1 ⇒ х = -1 ⇒ у = 1 + х²/(2х + 1) = 0
Итак
при х = 0 у = 1 - 1--е целочисленное решение
а при х = -1 у = 0 - 2-е целочисленное решение