Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
Объяснение:
1)
Правильная 4-х угольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
S(полн)=S(осн)+S(бок), S(осн)=АВ² , S(бок)=1/2 Р(осн)*а, где а-апофема.
S(осн)=24² , S(осн)=576 дц².
Пусть МК⊥ВС, тогда ОК⊥ВС , по т. о 3-х перпендикулярах. ОК=12 дц.
ΔОМК-прямоугольный , по т. Пифагора МК²=ОК²+МО² , МК=20 дц.
S(бок)=1/2 *(4*24)*20=960(дц²).
S(полн)=576+960=1536 (дц²).
На швы и обрезки ещё дополнительно тратится 25% ⇒
(1536*25):100=384(дц²) тратиться на швы и обрезки.
1536+384=1920 (дц²)
1. ∠AOD = 72°
2. 90°, 90°, 160°
3. a = 5 см
b = 10 см
4. ∠A = ∠D = 48°
∠С = ∠В = 132°
5. BD = 8 см
Объяснение:
1. Диагонали прямоугольника равны и точкой пересечения делятся пополам.
АО = ВО = ОС = OD
ΔАВС равнобедренный с основанием АВ. Углы при основании равны:
∠АВО = ∠ВАО = 36°
∠AOD - внешний для треугольника АОВ, значит равен сумме двух внутренних, не смежных с ним:
∠AOD = ∠АВО + ∠ВАО = 36° · 2 = 72°
2. В прямоугольной трапеции два угла по 90°, так как боковая сторона перпендикулярна основаниям.
Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.
Если ∠А = 20°, то
∠В = 180° - ∠А = 180° - 20° = 160°
3. Противоположные стороны параллелограмма равны.
Пусть х - одна сторона, тогда другая сторона 2х.
P = 2(a + b)
2(x + 2x) = 30
3x = 15
x = 5
a = 5 см
b = 2 · 5 = 10 см
4. Углы при основании равнобедренной трапеции равны.
Тогда ∠A = ∠D = 96 : 2 = 48°.
Сумма углов, прилежащих к боковой стороне трапеции, равна 180°.
∠В = 180° - ∠А = 180° - 48° = 132°
∠С = ∠В = 132°
5. Сумма острых углов прямоугольного треугольника равна 90°.
ΔАВМ: ∠А = 90° - 30° = 60°
Стороны ромба равны, значит ΔABD равнобедренный; угол при его вершине равен 60°, значит он равносторонний.
Тогда ВМ - его высота и медиана:
MD = AM = 4 см
AD = 8 см
BD = AD = 8 см