1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
1-a - основание столба, b - верхушка столба (= "фонарь"), c - основание дерева, d - верхушка дерева, e - конец тени. cd=1м, ac = 8ш; ce=4ш⇒ae=12ш. из подобия треугольников abe и cde⇒ ab/cd=ae/ce; ab= 3м 2-треугольник авс - прямоугольный. докажем это с применением теоремы пифагора: 41²=40²+9² 1681=1600+81 значит, ас - гипотенуза. в прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41: 2=20,5 см. ответ: 20,5 см. 3-1)вс^2=4^2+3^2=25 bc=5 2)bc^2=ac*hb 5^2=x*3 25=3x x=25/3 3)по теореме пифагора ас^2+5^2=(25/3)^2 ac^2=625-225/9 ac^2=400/9 ac=20/3 4-опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. тогда из получившихся прямоугольных треугольников найдем, что sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. теперь выразим икс. x = 2b*sin(α/2). 5-опускаем перпендикуляр bd на сторону ac. проекция ab на ac - это ad= ab cos a; проекция bc на ac - это cd= bc cos c. из теоремы синусов ab/sinc=bc/sina=ac/sin(a+c) ab=ac sinc/sin(a+c) bc=ac sina/sin (a+c) следовательно ad=ac sinc cosa/sin(a+c) cd=ac sina cosc/sin(a+c)
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.