Два треугольника называются равными ( Δ ABC = Δ A1B1C1), если у них соответствующие стороны равны AB=A1B1,AC=A1C1,BC=B1C1
и соответствующие углы равны A=A1 ,B=B1, C=C1 Признаки равенства: Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Рас6смотрим прямоугольный треугольник AMD. Длина гипотенузы АМ=кореньиз(80+20)=10. Найдем высоту DH, опущенную на гипотенузу AM, записав площадь треугольника AMD двумя 1/2*4*кореньиз(5)*2*кореньиз(5)=1/2*DH*10 DH=4 Т.к. DH перпендикулярна AM, и DD1 перпендикулярна плоскости основания, то D1H перпендикулярна AM, и угол DHD1 является углом между плоскостью основания призмы и плоскостью AMD1. В прямоугольном треугольнике DD1H найдем гипотенузу D1H=кореньиз(16+16*15)=16. Искомый косинус угла DHD1=DH/D1H=4/16=1/4=0,25. ответ: 0,25.
и соответствующие углы равны A=A1 ,B=B1, C=C1
Признаки равенства:
Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
Найдем высоту DH, опущенную на гипотенузу AM, записав площадь треугольника AMD двумя
1/2*4*кореньиз(5)*2*кореньиз(5)=1/2*DH*10
DH=4
Т.к. DH перпендикулярна AM, и DD1 перпендикулярна плоскости основания, то D1H перпендикулярна AM, и угол DHD1 является углом между плоскостью основания призмы и плоскостью AMD1.
В прямоугольном треугольнике DD1H найдем гипотенузу D1H=кореньиз(16+16*15)=16.
Искомый косинус угла DHD1=DH/D1H=4/16=1/4=0,25.
ответ: 0,25.