а) Берем циркуль и проводим из одной точки две окружности диаметрами как длины диагоналей. Из одной точки - потому что в параллелограмме диагонали в точке пересечения делятся пополам. Чертим в любой из окружностей диаметр. Берем транспортир и откладываем требуемый угол. Чертим через центр окружности под этим углом диаметр второй окружности. Соединяем точки пересечения диаметров с окружностями и получаем искомый параллелограмм.
б) Берем циркуль и проводим из одной точки (это будет первая вершина параллелограмма) окружности №1 и №2 радиусами как стороны параллелограмма. Чертим в окружности №1 радиус. Используя точку пересечения этого радиуса с окружностью №1 как центр (это вторая вершина параллелограмма), чертим ещё две окружности: №3 радиусом равным диагонали и №4 радиусом таким же, как в окружности №2. Получаем две точки пересечения окружности №3 с окружностью №2. Соединяем любую из них с центром окружностей №1 и №2. Из этой же точки пересечения (это третья вершина параллелограмма) чертим окружность №5 с таким же радиусом, как окружность №1. Одна из точек пересечения окружности №5 и окружности №4 и будет последней вершиной параллелограмма. Соединяем получившиеся вершины.
Пусть прямоугольник будет АВСД, а окружность имеет центр О.
Короткая сторона прямоугольника СД = АВ равна диаметру окружности (10см), следовательно, длинная сторона ВС=АД прямоугольника равна 17см.
Отрезок ОВ наклонён по углом 45°к сторонам АВ и ВС, поэтому ОВ √R² + R² = 5 √2.
ОА = ОВ = 5√2.
ОС = ОД = √((17 - 5)² + 5²) = √(144 + 25) = 13
Сумма расстояний от О до А, В, С, Д равна:
ОА +ОВ +ОС +ОД = 5√2 + 5√2 + 13 + 13 = 26 + 10√2
ответ: сумма расстояний от центра круга до вершин прямоугольника равна
(26 + 10√5)см
а) Берем циркуль и проводим из одной точки две окружности диаметрами как длины диагоналей. Из одной точки - потому что в параллелограмме диагонали в точке пересечения делятся пополам. Чертим в любой из окружностей диаметр. Берем транспортир и откладываем требуемый угол. Чертим через центр окружности под этим углом диаметр второй окружности. Соединяем точки пересечения диаметров с окружностями и получаем искомый параллелограмм.
б) Берем циркуль и проводим из одной точки (это будет первая вершина параллелограмма) окружности №1 и №2 радиусами как стороны параллелограмма. Чертим в окружности №1 радиус. Используя точку пересечения этого радиуса с окружностью №1 как центр (это вторая вершина параллелограмма), чертим ещё две окружности: №3 радиусом равным диагонали и №4 радиусом таким же, как в окружности №2. Получаем две точки пересечения окружности №3 с окружностью №2. Соединяем любую из них с центром окружностей №1 и №2. Из этой же точки пересечения (это третья вершина параллелограмма) чертим окружность №5 с таким же радиусом, как окружность №1. Одна из точек пересечения окружности №5 и окружности №4 и будет последней вершиной параллелограмма. Соединяем получившиеся вершины.