1. находим боковые стороны равнобедренного треугольника через его площадь:
S=a²sin120°/2 ⇒ a²=(25√3)/(√3/2)/2=25*4, a=√(25*4)=5*2=10 см - боковые стороны.
2. находим основание:
высота, проведенная к основанию равнобедренного треугольника, образует с боковой стороной и половиной основания прямоугольный треугольник где гипотенуза - боковая сторона - 10 см. Углы в этом треугольнике 90°, 60°, 30°. Против угла 30° (высота треугольника) лежит катет в два раза меньше гипотенузы ⇒ высота - 10/2=5 см;
далее либо по т. Пифагора находим половину основания треугольника, либо через формулу нахождения площади находим длину всего основания.
т. Пифагора: √(10²-5²)=√75=5√3 см - половина основания, (5√3)*2=10√3 - основание треугольника;
Объяснение:Трапеция АВСД, ВС=х, АД=2х, СД=АД/2=2х/2=х, уголД=60, АВ=6, проводим высоты ВН и СК на АД, треугольник КСД прямоугольный, КД=1/2СД=х/2, СК=СД*sin60=х*корень3/2=ВН, НВСК прямоугольник ВН=СК, ВС=НК=х, АН=АД-НК-КД=2х-х-х/2=х/2, треугольник АВН прямоугольный, АВ в квадрате=АН в квадрате+ВН в квадрате, 36=(х в квадрате/4)+(3*х в квадрате/4), 36=4*х в квадрате/4, х=6=СД, АВСД-равнобокая трапеция, АД=2*6=12, ВС=6, ВН=6*корень3/2=3*корень 3, площадь АВСД=1/2(ВС+АД)*ВН=1/2*(6+12)*3*корень 3=27*корень 3
Объяснение:
1. находим боковые стороны равнобедренного треугольника через его площадь:
S=a²sin120°/2 ⇒ a²=(25√3)/(√3/2)/2=25*4, a=√(25*4)=5*2=10 см - боковые стороны.
2. находим основание:
высота, проведенная к основанию равнобедренного треугольника, образует с боковой стороной и половиной основания прямоугольный треугольник где гипотенуза - боковая сторона - 10 см. Углы в этом треугольнике 90°, 60°, 30°. Против угла 30° (высота треугольника) лежит катет в два раза меньше гипотенузы ⇒ высота - 10/2=5 см;
далее либо по т. Пифагора находим половину основания треугольника, либо через формулу нахождения площади находим длину всего основания.
т. Пифагора: √(10²-5²)=√75=5√3 см - половина основания, (5√3)*2=10√3 - основание треугольника;
через площадь: в*h/2=25√3, в=50√3/5=10√3 см.